
UNIVERSIDADE FEDERAL DO ESTADO DO RIO DE JANEIRO

CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

AN APPLICATION ARCHITECTURE MODEL FOR EVENT PROCESSING AGENT

COMPOSITIONS ON REAL TIME STREAMING ANALYTICS SOLUTIONS

Luís Henrique Neves Villaça

Orientador até 15/08/2018: Leonardo Guerreiro Azevedo

Orientador após 15/08/2018: Sean Wolfgand Matsui Siqueira

RIO DE JANEIRO, RJ - BRASIL

SETEMBRO de 2019





Catalogação informatizada pelo(a) autor(a)

Villaça, Luís Henrique Neves

V172 An Application Architecture Model For Event

Processing Agent Compositions On Real Time

Streaming Analytics Solutions / Luís Henrique Neves

Villaça. -- Rio de Janeiro, 2019.

133 f.

Orientador: Sean Wolfgand Matsui Siqueira (após
15/08/2018); Leonardo Guerreiro Azevedo (até
15/08/2018).

Dissertação (Mestrado) - Universidade Federal do
Estado do Rio de Janeiro, Programa de Pós-Graduação
em Informática, 2019.

1. Event-Driven Architecture. 2. Real Time
Streaming Data Processing. 3. Event Processing
Agent Composition. I. Siqueira, Sean Wolfgand
Matsui, orient. II. Azevedo,Leonardo Guerreiro,
orient. III. Título.



Aos familiares, amigos, conselheiros e educadores.

i



Agradecimentos

Durante dois anos de trabalho que resultaram nesta tese, diversas pessoasme ajudaram,

ensinando, corrigindo os rumos e me apoiando. Não poderia deixar de reconhecê-las.

Agradeço em primeiro lugar à minha família. Aos meus filhos, que sempre se dis-

puseram em avaliar o que escrevi, inclusive nas diversas submissões de artigos em con-

gressos; à minha esposa, que se desdobrou me apoiando e permitindo que eu me dedicasse

a esse estudo; e aosmeus pais, que proporcionaramminha formação pessoal e profissional.

Aos meus amigos, que me apoiaram em todos os momentos - e, nas piores situações,

me encorajaram a perseverar no Mestrado.

Agradeço imensamente aos dois orientadores que aceitaram minha proposta e me

guiaram nessa jornada. Ao professor e amigo de longa data Leonardo Guerreiro Azevedo,

que mesmo nas situações mais adversas não deixou de se dedicar de maneira incansável a

artigos, minicursos, e a essa dissertação; e ao professor Sean Wolfgand Matsui Siqueira,

a quem igualmente admiro, que num momento difícil me acolheu como orientando (e a

outros tantos) bravamente encarando esse desafio, somado a tantos outros já comprometi-

dos.

Esse agradecimento se estende aos membros da banca examinadora, Dr. Rodrigo

Pereira dos Santos e Dr. Geraldo Zimbrão da Silva, por aceitarem o convite e pela co-

laboração ao avaliar este trabalho.

Agradeço aos colegas Israel de Oliveira Amorim, Leandro de Oliveira Pastura, De-

nilson da Rocha Candido, Andre Vieira Scuto, Bruno Bastos Lima, Marcelo Rezende de

Fazio, Leticia Vasconcellos Mendes e Marcio Pati Andrada; pela dedicação, colaboração

ii



na organização e avaliação do modelo proposto. Todos são para mim uma referência na

área de Arquitetura de Software.

Meu reconhecimento aos colegas da Unirio, que me motivaram a seguir lutando pelo

meu objetivo: Marcelo Tibau de Vasconcellos Dias, Bruno Mauricio Rodrigues Crotman,

Andre de Almeida Farzat, Felipe Ribeiro Santos, Rodrigo da Silva Melo, Fabio Marcos

de Abreu Santos, Elton Figueiredo de Souza Soares e Leonardo Mendes Cabral.

Por fim, meus sinceros agradecimentos à Unirio, pelos professores, pela equipe da

Secretaria, pelo laboratório, e pelo auxílio no custeio da viagem ao Congresso SBSI; e à

Petrobras Transporte S.A., pelo incentivo à minha formação proporcionado pelos gestores

Mario Ferreira Miranda Junior, Carlos Roberto da Silva Melo Junior, Jose Ricardo Telles

Esses, Paulo José Azevedo Vianna Ferreira, Tarcisio Rangel e Alessandro Leal Eccard.

iii



Villaça, Luís Henrique Neves An Application Architecture Model for Event Pro-

cessing Agent Compositions on Real Time Streaming Analytics Solutions. UNIRIO,

2019. 133 páginas. Dissertação de Mestrado. Departamento de Informática Aplicada,

UNIRIO.

RESUMO

Arquiteturas de Processamento de Eventos Complexos (CEP, ou Complex Event Pro-

cessing), mostram alta aplicabilidade em cenários de processamento analítico sobre stream-

ing (processamento por fluxos) em tempo real. Embora diretrizes e modelos para essas ar-

quiteturas já tenham sido propostos na academia e na indústria, a composição dos elemen-

tos interoperáveis e responsáveis pelo processamento de eventos, conhecidos como EPA

(Event Processing Agent), permanece um desafio para arquitetos e desenvolvedores de

software. Não há um modelo CEP que elucide aspectos relacionados a essa composição.

Este trabalho propõe um novo modelo que trata essa lacuna e contempla requisitos de

processamento em alta escala (Big Data) por meio de características como construções de

processamento baseadas em streams e EPA especializados (e.g., em detecção de padrões).

Este modelo foi aplicado em um caso real de captura e processamento, via streaming,

de eventos de utilização oriundos de mais de 200 aplicações. Foram observados indi-

cadores relativos a performance; coesão e acoplamento dos componentes; e assertividade

dos resultados, demonstrando potencial para lidar com dados heterogênos que transitam

por fluxos de execução sofisticados de forma escalável e eficiente. Especialistas da indús-

tria também avaliaram o modelo qualitativamente, quanto à sua capacidade em atender a

requisitos de processamento analítico sobre streaming em tempo real.

Palavras-chave: Arquitetura orientada a eventos, Processamento por fluxos em tempo

real, Composição de agentes de processamento de eventos.
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ABSTRACT

Complex Event Processing (CEP) architectures present high applicability in Real Time

Streaming Analytics scenarios. Although guidelines and models for these architectures

have been proposed in academia and industry, the composition of its inter-operable ele-

ments that are in charge of processing events, known as Event Processing Agent (EPA)

remains a recurring challenge for software architects and software developers. There is

no CEP model that embraces and clarifies aspects related to this composition.

This work presents a new model that covers this gap, and also addresses large-scale

processing (Big Data) requirements through features such as stream-based processing con-

structions and specialized EPA elements (e.g., for pattern detection). The proposed model

has been applied in a real case for capturing, via streaming, utilization events from more

than 200 applications in a large company. Indicators regarding performance; degree of

cohesion and coupling of components; and assertiveness of processing results were ob-

served, demonstrating potential to handle heterogeneous data through sophisticated exe-

cution flows in a scalable and efficient manner. Our proposal has also been qualitatively

evaluated by industry experts in terms of its capability to meet real-time streaming ana-

lytical processing requirements.

Keywords: Event-Driven Architecture, Real Time Streaming Data Processing, Event

Processing Agent Composition.
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1. Introduction

This chapter is an overview of this research, and presents the context for the addressed

problem, the purpose of the proposed solution, and the scientific research methodology

applied in this study.

1.1 Research Context

Complex Event Processing (CEP) solutions provide mechanisms for extraction and

generation of valuable information from continuous data feeds, and has benefited from

prominent technologies, such as Apache Kafka1 and Spark2, to handle large-scale data

analytic scenarios on real time, such as stock markets, traffic, surveillance, and patient

monitoring (ETZION; NIBLETT; LUCKHAM, 2011; PERERA; SUHOTHAYAN, 2015;

ZIMMERLE; GAMA, 2018).

CEP solutions basically capture occurrences within a particular system or domain

(events) and include specific logic to filter or transform their information, or to detect

patterns as they occur. CEP architectures are inherently complex, especially because of

the nature of the operations involved, such as: highly frequent occurrences; large volumes

of heterogeneous data; distributed processing; and polyglot data integration - i.e., different

types of data models and even data stores might be involved (LEBERKNIGHT, 2008).

EPA (Event Processing Agents) are in the core of CEP architectures. These are en-

tities responsible for the processing of events. CEP business scenarios are processed by
1https://kafka.apache.org/
2https://spark.apache.org/

1
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interdependent EPA agents. Hence, arrangements of EPA are established so that they can

benefit from each other processing capabilities (LUCKHAM, 2002; ETZION; NIBLETT;

LUCKHAM, 2011).

EPA compositions, also named EPA architecture, express the power of organizations

based on of those agents on CEP scenarios (LUCKHAM, 2002). The idea is to deal with

a network of EPAs as just another EPA. The design of EPA compositions should han-

dle requirements, such as efficiency, low coupling and scalability, and it should address

demands to facilitate interoperability between EPAs (ETZION; NIBLETT; LUCKHAM,

2011).

This work focuses on Realtime Streaming Analytics scenarios on CEP systems, which

accept one or more data streams as input and react to occurrences as they come in, often

within few milliseconds, producing one or more data streams as output. A data stream

consists of events ordered in time, and each event may bring several attributes related to

an occurrence. Solutions other than streaming platforms trigger data aggregations from

mechanisms such as rule engines or scheduled batch processes, and do not support those

needs (ETZION; NIBLETT; LUCKHAM, 2011; MENDES; BIZARRO; MARQUES,

2013; PERERA; SUHOTHAYAN, 2015), therefore are out of scope of this work.

Our proposal leverages mechanisms from streaming platforms for processing continu-

ous flows of events when composing EPAs. It benefits from features such the elaboration

of pipelines of intermediate and terminal operators for stream processing, constructors for

parallelism and efficient data structures for storing data while processing,

1.2 Research Question and Motivation

Building cooperating services is a highly complex task, spanning many concepts and

technologies that find their origins in diverse disciplines that are woven together in an in-

tricate manner (PAPAZOGLOU, 2009). Industry CEP solutions encompass cooperating

services, and demand from system architects and developers the capacity to mitigate chal-

lenges of distributed heterogeneous applications, such as fault tolerance, scalability, and

performance, to effectively process and manage massive amounts of data produced by dis-
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tributed data sources. This is required in order to provide solutions that perform real-time

analytics for supporting decision-making and timely response(BAPTISTA et al., 2016).

On top of those, EPA compositions brings specific requirements, such as aggregating oc-

currences that relate to each other (process known as windowing) according to composed

data structures that represent a processing context (PERERA; SUHOTHAYAN, 2015).

To evaluate studies that could be used as a baseline to structure EPA compositions

we conducted a literature review (Section 2.1 and AppendixA) which revealed that no

proposal, considering the evaluated date range, organizes the concepts with regard to this

subject.

This research investigates the following research question: "How to compose event

processing agents to meet demands of Realtime Streaming Analytics solutions?".

The hypothesis is "a model that represents EPA compositions, incorporating stream

processing, segregation based on context, historical data processing and incremental train-

ing, fulfills requirements for building Realtime Streaming Analytics solutions". As a re-

sult, this model can become a guidance for system architects to follow in order to simplify

the process of designing such solutions, addressing a current challenge for CEP solution -

isolating developers from the complexities of hardcore programming while empowering

themwith the ability to express CEP scenarios in a simpler andmore intuitivemanner (DA-

YARATHNA; PERERA, 2018). This also may improve solution maintainability, which

is relevant since use cases for real-time processing do not rely on static implementations

(i.e., left untouched for a long time) - software artifacts need to be adapted frequently in

order to reflect new requirements and business needs (BAPTISTA et al., 2016).

1.3 Research Proposal and Benefits

This work proposes a model that provides a baseline for compositions of EPAs, as-

sisting on the elaboration of constructs that can be applied on scenarios that cover cases

ranging from simple static aggregations of EPAs to dynamic provisioning and decom-

missioning of those agents. For that, we included elements to represent a complete CEP

solution, encompassing all constructs that make it feasible for EPA agents to operate, ex-
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change events and other required information, and provide processed information to in-

terested parties.

It was conceived based on fundamental CEP concepts and Stream processing strate-

gies (Section 2), refined and validated according to discussions on compositions of event

processing agents from a variety of industry publications and academic papers. It aims to

organize requisites and support the elaboration of the proposed model.

Several advantages are expected from the usage of the model, such as:

• Explicit and formal descriptions of CEP elements aiming at presenting accurate

descriptions to mitigate ambiguous interpretations of concepts;

• Reuse through sharing of concepts and functionalities among involved components;

• High level model towards automation, i.e., we offer guidelines for the automation

of the processing of business rules. This is independent of underlying implementa-

tion technologies (i.e., Spark, Kafka, Flink etc.), which can be chosen for specific

implementation cases according to the scenario and available resources.

1.4 Research Methodology

CEP architectures present heterogeneous terminology, data formats and APIs. From

a research point of view, the lack of common models, semantics and standards makes the

comparison of the existing approaches hard (MENDES; BIZARRO; MARQUES, 2008).

This study considered the disperse knowledge on CEP solutions and required constant

re-examining of former decisions as we progressed through research stages: planning,

defining the model, compartmentalizing it into units of analysis, designing the artifact,

implementing a case, collecting metrics, analyzing and documenting the conclusions.

Quantitative metrics were assessed from an experimental study (Section 4.1). The

model was applied in a scenario of a global oil transportation company, where a solution

collects user requests, as streams of events, related to around 200 systems, and provides

a dashboard for monitoring usage of those. We assessed quantitative metrics of our im-

plementation according to guidelines from a performance evaluation framework for CEP
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systems (MENDES; BIZARRO; MARQUES, 2008, 2013).

Also, a complementary evaluation of our model was performed qualitatively by ex-

perienced system architects from industry(Section 4.2). A questionnaire was applied for

capturing their feedback in regard to the capability of our model to meet a set of thirteen

requirements of real time streaming analytics (PERERA; SUHOTHAYAN, 2015).

1.5 Master Thesis Outline

This thesis follows the application of a research method that contemplates qualitative

evaluations and an experimental study in the context of CEP Application Architectures.

Figure 1.1 correlates the research stages to the chapter structure of this dissertation, de-

scribing where each stage item was approached throughout this study.

Stage 1: Research Plan

Theme Introduction
Elaboration of Problem
Elaboration of Hypothesis

Stage 2: Preparation

Concepts
Literature Review

Stage 3: Execution

High Level Design for the Solution
Design Compartimentalization
Components Detailing

Stage 4: Evaluation

Workshop feedback
Experts considerations
Application in an industry case

Stage 5: Conclusion

Results Consolidation Report
Study Conclusions

Chapter 1 - Introduction

Motivation and Research Problem
Research Question and Motivation
Research Proposal and Benefits
Research Methodology
Thesis Organization

Research Stages

Chapter 2 - Fundamentals and Related 
Work

Fundamental Concepts
Related Studies

Chapter 3: A CEP Model for EPA 
Compositions

Introductory Aspects
Overview Diagram 
Model Compartmentalization
Domain Layer
User Interface Layer
Application Layer
Infrastructure Layer

Thesis Structure

Chapter 4 - Evaluation

Expert Feedback: Description & Results 
Experimental Study: Description & Results

Chapter 5 - Conclusion

Conclusion Description, Future Work

Appendix

Literature Review: Description & Results
Coupling Metrics Evaluation

Figure 1.1: Research Stages and Thesis Structure

The research planning depicted in Chapter 1 describes the study objectives, research

problem, hypothesis for evaluation and methodology used.
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Chapter 2 provides the fundamental CEP concepts and definition elements used through-

out the work, and present papers identified with relevant contributions pertaining the com-

position of EPAs.

The solution is described in Chapter 3, being presented first in general terms. Due

to its complexity, the overview diagram was compartmentalized, and components within

each module were further detailed.

Then, themodel was evaluated in Chapter 4 in distinct ways: according to the feedback

collected from academia and industry experts, and based on an implementation of a real

industry case experiment.

Finally, Chapter 5 presents the conclusions, limitations and future work.



2. Fundamentals and Related Work

This chapter presents the main concepts related to Complex Event Processing archi-

tectures and their challenges, relating them to the scope of this study.

2.1 Fundamental Concepts

CEP architectures are inherently built around their most fundamental element - the

event, which is an occurrence within a particular domain, indicating something that has

happened - or may have happened (e.g., inference such as indication of a financial fraud

or a network attack) in that domain. Three actors are the definition elements responsible

for managing events (LUCKHAM, 2002):

• Event Producer - introduces into CEP platforms any form of data originated from

external systems;

• EPA - performs processing of events introduced either by producer or other EPAs.

It can be individually classified as:

– Filtering Agents: filter events based on mechanisms like acceptance expres-

sions or exclusion criteria;

– Transformation Agents: perform operations, such as enrichment (complement-

ing information) and aggregations over multiple occurrences; and,

– Pattern-Detection Agents, whose pattern-detection operationsmay be perceived

under different prisms, such as time (e.g., measuring successive failures in

components) or space (e.g., recognition of objects in images);

7
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• Event Consumer - consumes events derived from CEP platforms.

Those agents perform their tasks and interact with each other via mechanisms built ac-

cording to additional CEP definition elements (LUCKHAM, 2002; ETZION; NIBLETT;

LUCKHAM, 2011):

• Event Type - represents event semantics and guide decisions about the distribution

of events among CEP components;

• Context - maintains a set of conditions of various dimensions (e.g., temporal) pro-

viding a way to group correlated instances of events;

• Global State - refers to data from external sources that complements event informa-

tion, such as reference data (for enriching events) and to system-wide global values

(such as indicators for log level);

• Channel - provides event fetching and delivery capabilities for EPA, Event Con-

sumer and Event Producer components. Figure 2.1 depicts how CEP agents interact

with each other via this element.

Figure 2.1: Interaction through Event Channel (EC) - adapted from (LUCKHAM, 2002)

Understanding how to elaborate CEP architectures, and how EPAs can be composed

into solutions that fit industry needs remains a challenge - especially considering factors

such as increasing data volumes, high frequencies, distributed processing, and complex-

ity of composition patterns (LUCKHAM, 2002; PASCHKE; VINCENT, 2009; ETZION;

NIBLETT; LUCKHAM, 2011; BINNEWIES; STANTIC, 2012; RAY; LEI; RUNDEN-

STEINER, 2016; OLLESCH; HESENIUS; GRUHN, 2017).

A case where complexity rises is processing a combination of activities in a segre-

gated context - e.g., detect which bank clients are making more than 3 withdrawals within



CHAPTER 2. FUNDAMENTALS AND RELATED WORK 9

a 24 hour interval (Figure 2.2). In this case, the events can be processed through con-

text partitions (i.e., event windows) applied on the flow, based on the client id and

time (e.g., 24 hours since a withdrawal transaction). Here, an important aspect is context

sensitivity (ETZION; NIBLETT; LUCKHAM, 2011): infinite streams are usual in CEP

scenarios, and processing of a continuous flow of events cannot always wait until the last

occurrence manifests.

Figure 2.2: Aggregation of bank transactions

To perform all activities within the segmented context, EPA compositions representing

the full operation needs to be mapped into a nested group of task-specific EPAs, all related

to context partitions.

We conducted a literature review on ACM, IEEE Xplore, Scopus and Scholar digital

libraries to investigate strategies for EPA compositions.

For this review, 2.754 distinct papers were selected out of 6.629 initial matches, scru-

tinized according to relevance of title and the tags to the theme. By filtering out arti-

cles based on abstract and inspecting further relevant tags, the number of matching ar-

ticles became 394. By selecting relevant papers according to abstract and introduction

text, matches went down to 129 After reading and analyzing the chosen papers, only 28

presented relevant information to support this research (CUGOLA; MARGARA, 2012;

RENNERS; BRUNS; DUNKEL, 2012; ARTIKIS et al., 2012; LINDGREN; PIETRZAK;

MÄKITAAVOLA, 2013; MARGARA; SALVANESCHI, 2013; MENDES; BIZARRO;

MARQUES, 2013; STOJANOVIC et al., 2014; BAUER; WOLFF, 2014; NECHIFOR et

al., 2014; BAUMGÄRTNER et al., 2015; PERERA; SUHOTHAYAN, 2015; KOLCHIN-

SKY; SHARFMAN; SCHUSTER, 2015; KHARE et al., 2015; CARBONE et al., 2015;
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VELASCO; MOHAMAD; ACKERMANN, 2016; BAPTISTA et al., 2016; RISCH; PE-

TIT; ROUSSEAUX, ; RAY; LEI; RUNDENSTEINER, 2016; FALK; GURBANI, 2017;

MAYER; MAYER; ABDO, 2017; DOBBELAERE; ESMAILI, 2017; D'SILVA et al.,

2017; ICHINOSE et al., 2017; CANIZO et al., 2017; YADRANJIAGHDAM; YASROBI;

TABRIZI, 2017; ZIMMERLE;GAMA, 2018; MANJUNATHA;MOHANASUNDARAM,

2018; DAYARATHNA; PERERA, 2018), complemented by 3 studies obtained by snow-

balling them, which were (MENDES; BIZARRO; MARQUES, 2008; PASCHKE; VIN-

CENT, 2009; TEYMOURIAN; PASCHKE, 2010). Two of these papers (PASCHKE;

VINCENT, 2009; TEYMOURIAN; PASCHKE, 2010) also served as a reference for 3

industry articles (BASS, 2006; MOXEY et al., 2010; ORACLE, 2010). So, we end up

with a total of 34 publications as a result of this review. This activity revealed that the

organization of EPA compositions remains an open question in the literature. However,

some works present good descriptions of CEP components (BASS, 2006; PASCHKE;

VINCENT, 2009; ORACLE, 2010; MOXEY et al., 2010; ETZION; NIBLETT; LUCK-

HAM, 2011) and were used in the model proposed in this theses, providing enlightenment

for the elaboration and attribution of responsibility of CEP components.

The literature review is described in detail in Appendix A.

2.2 Related Work

This section presents studies that brought relevant contributions to understanding re-

quirements for the composition of EPAs and, to a greater extent, to the elaboration of a

model encompassing all CEP components and determining how they interrelate.

2.2.1 Conceptual Models

EPTS1 elaborated a reference architectural model (PASCHKE; VINCENT, 2009) clar-

ifying CEP common design patterns based on commonalities from three CEP industry

models that have been described below.

• IBM Conceptual Model (MOXEY et al., 2010) provides a classification for CEP
1Event Processing Technical Society, or EPTS, promotes understanding and advancement in the field of

event processing, and develop standards
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components based on their main duties: Emitter: converts and packages event pro-

ducer input data to deliver standardized events to the bus; Event Bus: receives

events from emitters with potentially high frequencies, and delegates its process-

ing to EPAs, aiming to derive a reduced amount of relevant events (to the business);

Event Handler: provides mechanisms to deliver events from the bus to consumers.

Highlights: Similarities from Event Producer and EPA (event publishing via Bus),

and Event Consumer and EPA (event consumption via Bus) were perceived on our

study as an opportunity to enforce reusability while modelling those components.

But the main contribution from this model is the idea of a conceptual "nested" archi-

tecture, where agents could contain within themselves a network of further agents

that communicate through a segregated event bus.

• TIBCO BusinessEvents Model (BASS, 2006) provides contextual event responses

at real time through the following architecture tasks: Event Pre-processing: for nor-

malization, transformation, data cleansing on raw data; Event Tracking: for event

identification and event pre-selection; Situation Detection: for identification based

on relationships between events and historical data; Predictive Analysis: for im-

pact assessment, i.e., estimation of the impact of complex events on the organiza-

tion and business processes; Adaptive Business Process: for dynamic adjustment of

processes based on the overall processing architecture.

Highlights: Common event pre-selection tasks based on "events of interest" were

adopted in the model to provide simple filtering mechanisms for all EPA and Con-

sumer nodes. Also, distributed event-driven architectures provide the underlying

communication infrastructure to enable high performance event processing services.

• Oracle Complex Event Processor Model (ORACLE, 2010) provides a platform to

process and analyze large scale real-time information via sophisticated correlation

patterns based on: Event sourcing strategy: where multiple sources of informa-

tion publish their updates as events, triggering processing mechanisms that consider

event state changes; Event-type schema: define events from a tuple of attributes.

Pattern matching based on event type: filter out redundant or irrelevant data and

correlate meaningful events to infer critical decisions; Continuous stream of events:

the base for processing. A query language can assist this task by defining the win-
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dow of time for evaluation, event correlations and sequencing considerations.

Highlights: This solution incorporated event sourcing strategy for the interaction

among EPA nodes within compositions via a segregated channel (structure apart

from the channel used by Event Producers, Event Consumers and non-composite

EPAs). Also, our proposal was influenced from the fact Oracle CEP solution has

evolved to represent an EPN based on decoupled event driven applications, accord-

ing to microservices architecture2.

According to those models, an event processing node may be an individual event pro-

cessing agent or an event processing network (EPN) (PASCHKE; VINCENT, 2009), con-

sisting itself on a collection of event processing agents, producers, consumers, and global

state elements connected by a collection of channel nodes (ETZION; NIBLETT; LUCK-

HAM, 2011). However no further implementation details nor clear guidance to design

EPA compositions are provided. Therefore, designing cases where multiple EPAs interact

under a complex context is not a trivial task. Also, they have been evaluated by Perera e

Suhothayan (2015) according to their capacity to provide required functionalities needed

for Realtime Streaming Analytic Solutions. The analysis pointed out a few gaps, such

as interacting with historical data sources, and dynamically triggering a detailed analysis

based on detected trends. Yet, those models contributed with meaningful design decisions

to our model, which we have highlighted above.

Stream-based processing approach indicated on the following CEP models was also

considered on the design of our proposal:

• A domain-specific reference model for text data analysis triggered by events related

to document processing, considering semantics that correlate text blocks (verbs,

nouns etc.) (BAUER; WOLFF, 2014);

• Another domain-specific reference model for controlling sensor and actuator de-

vices, representing characteristics such as sensor attributes, equipment location (REN-

NERS; BRUNS; DUNKEL, 2012).
2https://docs.oracle.com/en/solutions/learn-architect-microservice/index.html#GUID-BDCEFE30-

C883-45D5-B2E6-325C241388A5
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2.2.2 Domain-Driven Design - Layers and Building Blocks

CEP scenarios in industry are reaching a complexity ceiling where next-generation

platform technologies, such as IOT, automation systems, web API and other product-line

architectures have become so complex that designers spend a long time mastering spe-

cific design patterns, and are often familiar with only a subset of the features they use

regularly (SCHMIDT, 2006).

To approach the effort needed to correlate our CEP model components and compart-

mentalize them into cohesive units of analysis, we adopted principles of Domain-Driven

Design (DDD) (EVANS, 2004) - a paradigm that solves problems associated with the com-

position of software components by: focusing on core domain aspects; and exploringmod-

els that emerge out of functional (business) and non-functional (technical) requirements

via a common language within bounded contexts. By allowing us to focus separately on

distinct requirements, and clarifying separation of duties, DDD strategy effectively met

our specific needs.

In our case, a high-level abstract model representing CEP components was succes-

sively translated, via a systematic approach, into increasingly more detailed models, so

that different modules concentrate on different parts of the design, following DDD strat-

egy (EVANS, 2004). This needed to be accomplishedwithout losing track of the integrated

view, so that it did not violate key architectural principles, such as high cohesion and low

coupling.

A contribution fromDDD principles for compartmentalizing our model is the architec-

ture layer division. In the following, we introduce each layer and describe their expected

behaviour:

• Domain - Responsible for representing concepts and information about the business

(entities, rules etc.). Technical details of storing it are delegated to the infrastructure;

• User Interface - Provides integration with external actors;

• Application - Defines the jobs the software is supposed to do and leverages domain

objects to orchestrate meaningful tasks to the business;
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• Infrastructure - Provides technical mechanisms to support higher layers: message

sending for application, persistence for domain etc. It may support the interactions

between the layers through an architectural framework.

In order to better characterize the components in terms of responsibility, the follow-

ing design patterns, referenced as DDD building blocks, condenses a core of best prac-

tices from object-oriented domain modelling (EVANS, 2004) and were considered by this

study:

• Entity: distinguishes objects by their unique identity, rather than attributes (ID gen-

eration algorithm can be challenging on concurrent processing scenarios);

• Value Object: represents descriptive aspects of the domain, is usually immutable

(shared safely) and transient (discarded after an operation);

• Service: an operation offered as an interface, defined in terms of what it can do for

a client. For instance, it may provide a subset of the attributes from an Entity, or

a calculated value based on those, thus decoupling clients from Entity blocks. It

also controls granularity, e.g.: medium-grained, stateless Service can be easier to

reuse in large systems because they encapsulate significant functionality behind a

simple interface, while fine-grained objects can lead to inefficient messaging in a

distributed system;

• Event: represents an occurrence at a point in time as a domain object, and is usually

immutable. In addition, it typically contains the identity of entities and value objects

involved in the occurrence;

• Aggregate: groups related instances assisting them to keep track of its conceptually

constituent parts;

• Repository: a collection of objects of a certain type as a conceptual set. It acts like

a collection, except with more elaborate querying and persistence capabilities;

• Factory: Shifts the responsibility for creating instances of complex objects to a sep-

arate instance, which simplifies the creation process, and hides internal details.
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2.2.3 Streaming Constructs

We adopted a stream processing strategy that allows parallel, asynchronous consump-

tion of events (maximizing responsiveness to occurrences). This is a trend for strate-

gies driven by a increasing number and capabilities of devices acting as distributed nodes

(LINDGREN; PIETRZAK; MÄKITAAVOLA, 2013).

Benefits from the usage of Stream libraries, such as Java Stream and Flow APIs3, are

higher performance andminimized latencywhen applied to CEP solutions (BAUMGÄRT-

NER et al., 2015; ZIMMERLE; GAMA, 2018), obtained via:

• operations on a stream that produce a result without modifying its source - efficient

data structures can be used for inference, validation and disposal of data, and storage

is minimized;

• tasks that can be implemented in a lazy way, indicating opportunities for optimiza-

tion, e.g., operations such as limit(n) allow computations on infinite streams in

finite time (KOLCHINSKY; SHARFMAN; SCHUSTER, 2015);

• pipelines of functional-style operations that can be composed through intermediate

operations (which derive new streams) and, terminal operations (which produce a

value that represents an aspect of a stream (e.g., average value); and

• natural constructions for parallelism, if there are no sequential constraints for pro-

cessing over multiple CPU cores.

In fully reactive stream scenarios, the producer may slow down to cope with con-

sumer capabilities (i.e. via backpressure, based on reactive streams specifications, under

java.util.concurrent.Flow). Khare et al. (2015) confirms the benefit of reactive Stream li-

braries (Microsoft .NETReactive Extensions) as it integrates with OMGData Distribution

Service (DDS4), a publish/subscribe middleware suitable for industrial IoT applications.

But the reality for many CEP solutions is that original producers are fully detached

components (such as sensors) that keep producing events at their own pace, therefore
3https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/stream/package-summary.html

and https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/Flow.html
4https://www.omg.org/omg-dds-portal/
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excessive data that cannot be consumed immediately needs to buffered (up to a limit) or

even dropped. This is the strategy for event correlation engines such as Esper5 and Apache

Flink6, which combine event stream processing and CEP capabilities with its own event

processing language, based on lambda constructs, to express filtering, aggregation and

joins over event streams (STOJANOVIC et al., 2014; NECHIFOR et al., 2014). To avoid

vendor-specific implementation details we adopted the following lambda expressions7:

• Predicate<T>, BiPredicate<T,U> - given T, or T and U arguments, returns

a boolean value (useful on filtering operations);

• Function<T,R>, BiFunction<T,U,R> - given T, or T andU arguments, returns

an instance of R (useful on transformation operations);

• UnaryOperator<T>, BinaryOperator<T> - given one or two instances of T,

returns another instance of T (useful on reduce operations, to produce a single re-

sultant T instance from a stream of T elements);

• StreamConsumer<T> - accepts a single T argument and returns no result (useful

for pulling events). This was renamed to distinguish it from EventConsumer.

Notation for related elements is also indicated in the model:

• Optional<T> - handle cases where the T instance may be nullable8;

• Interface private implementationmethod9, for code re-usability andmod-

ularization;

• Template parameter notation indicates (in squares) generic10 parameter type

associations for dynamic type casting, as further explained in Section 3.8.

Although Java notation was used, this model can be adapted for any language with

stream processing capabilities (C#, C++, Scala, etc.), or any that integrates with streaming
5http://www.espertech.com
6https://flink.apache.org
7https://docs.oracle.com/javase/10/docs/api/java/util/function/package-summary.html
8https://docs.oracle.com/javase/10/docs/api/java/util/Optional.html
9https://docs.oracle.com/javase/specs/jls/se9/html/jls-9.html
10https://docs.oracle.com/javase/tutorial/java/generics/inheritance.html
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computation engines (e.g., Spark, Storm, Flink, Kafka Streams). We chose Java due to

its relevance in industry - 52% of CEP commercial systems have been implemented using

Java (DAYARATHNA; PERERA, 2018).

2.2.4 Realtime Streaming Analytics Patterns

Realtime Streaming Analytics Sytems need to process data as events raise, allowing

continuous flow analysis. It accepts one or more data streams, consisting of several time-

bounded events as input, and produces one or more data streams as output. Thirteen real-

time analytics patterns (PERERA; SUHOTHAYAN, 2015) address the need of a common

shared understanding, among practitioners, on requirements for analytics use cases from

Complex Event Processing systems:

1. Preprocessing - performed as a projection from one data stream to the other, or

through filtering;

2. Alerts and Thresholds - detects a condition and generates alerts based on a simple

value or more complex conditions such as rate of increase;

3. Simple Counting and Counting within Segmented Windows - includes aggregate

functions (Min, Max, Percentiles etc.) which can be calculated in isolation (e.g.,

counting failed transactions) or under a time window attached to it (e.g., failure

count in the last hour);

4. Joining Event Streams - combines multiple data streams and create a new event

stream (using pattern for joining operations);

5. Data Correlation, Missing Events, and ErroneousData -Match events from different

streams, detects missing events in a data stream, and use redundant data to find

erroneous events and remove them from further processing;

6. InteractingwithDatabases - combines real-time data against historical data persisted

in a data source;

7. Detecting Temporal Event Sequence Patterns - given a sequence of events, we can

write a regular expression to detect a temporal sequence of events arranged on time

where each event conforms to a given acceptance criteria;
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8. Tracking - tracks objects over space and time and detects given conditions. For

instance, certifying all cars adhere to routes and speed limits;

9. Detecting Trends - Detects patterns from time series data and brings them into op-

erator attention;

10. Running the Same Processing Mechanisms in Batch and Realtime Pipelines - com-

bines batch processing tools and on-line processing solutions such as CEP;

11. Detecting and Switching to Detailed Analysis - detects a condition that suggests

some anomaly, and further analyze it using historical data. This is used for use

cases where we cannot analyze all the data in full detail. Instead, only anomalous

cases are viewed in full detail;

12. Using a Model - train a model (often via Machine Learning), and then use it with

the Realtime pipeline to make decisions;

13. Online Control - automatizes control - e.g., autopilot and self- driving. Involves

problems, like situation awareness and predicting next value.

2.2.5 Industry Processing Requirements

Due to the industry requirements to process large volumes of ingested data in a short

period of time, the following aspects have been pointed out on related studies as critical

for CEP solutions (CARBONE et al., 2015; D'SILVA et al., 2017; FALK; GURBANI,

2017; MAYER; MAYER; ABDO, 2017).

• Support for batch introduction of events: based on a "store and forward" approach

(telecommunications technique to tolerate delay among network nodes) as sug-

gested in an architecture (D'SILVA et al., 2017) that uses Apache Kafka for online

and offline consumption andApache Spark to process streams. Apache Flink (CAR-

BONE et al., 2015) also presents its own strategy for batch introduction via its

stream processing API. Our model, not tied to industry solutions, has an offline rep-

resentation of Event Producer to pull batches of events from a Global State (Section

3.5.1).
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• Advanced Filtering: A proposal to move the extraction-transformation-load (ETL)

activities further into the event processing pipelines alleviates latency problems

whenever constraints prevent us from filtering data at event producers (as it would

impact their capabilities) (FALK; GURBANI, 2017). In our study, filtering and pro-

jecting data allow analytics platforms to process higher workloads. Subscription

criteria containing event types, where each one includes relevant filter attributes,

supports the implementation of this aspect in our model.

• Incremental Model Training: our CEP model incorporates Machine Learning capa-

bilities to improve pattern recognition accuracy during EPA processing, based on

a study that explores continual learning methodology (MAYER; MAYER; ABDO,

2017) (Section 3.6.1.4). This is built from the idea of adapting prediction models

according to evolving data distributions that reflect the external world. It presents

challenges in terms of scalability to process ever increasing data volumes via sus-

tainable computing resources (e.g., CPU and memory).

2.3 Summary

This chapter presented innovative design strategies we leveraged for establishing EPA

compositions according to organized structures and best practices (such as streaming,

advanced filtering and incremental model training). Those are not covered in existing

CEPmodels (LUCKHAM, 2002; BASS, 2006; PASCHKE; VINCENT, 2009; ORACLE,

2010; MOXEY et al., 2010; ETZION; NIBLETT; LUCKHAM, 2011). Therefore, we in-

dicate our model as an enhancement over those, since it leverages existing representations,

but also introduces relevant features for realtime streaming analytics solutions.

Table 2.1 organizes the concepts and consolidates relevant knowledge currently scat-

tered over different models and papers.

Table 2.2 consolidates all mapped gaps we aim to address in our proposed model in an

overview, consisting of 17 requirements, that encompasses: EPA composition, as depicted

in Section 2.1; the patterns from Section 2.2.4 related to realtime streaming analytics;

and industry CEP requirements from Section 2.2.5. It also correlates each requirement

to capabilities from existing CEP models, according to studies from Paschke e Vincent



CHAPTER 2. FUNDAMENTALS AND RELATED WORK 20

(2009), Cugola e Margara (2012), Perera e Suhothayan (2015) and available documenta-

tion (BASS, 2006; MOXEY et al., 2010; ORACLE, 2010).

Table 2.1: Reference Studies
Contribution References

Fundamental concepts and data
structures

(LUCKHAM, 2002; BASS, 2006; MOXEY
et al., 2010; ORACLE, 2010; ETZION;
NIBLETT; LUCKHAM, 2011; ARTIKIS et al.,
2012)

Segregation of responsibilities (EVANS, 2004; BASS, 2006; PASCHKE; VIN-
CENT, 2009; MOXEY et al., 2010; ORACLE,
2010; TEYMOURIAN; PASCHKE, 2010; ET-
ZION; NIBLETT; LUCKHAM, 2011)

Handling high volumes of dis-
tributed data

(BASS, 2006; ORACLE, 2010; MOXEY et
al., 2010; SHARP et al., 2013; PERERA;
SUHOTHAYAN, 2015; RAY; LEI; RUNDEN-
STEINER, 2016; NADAREISHVILI et al.,
2016; FALK; GURBANI, 2017; DOBBE-
LAERE; ESMAILI, 2017)

Offline batch processing of events (CARBONE et al., 2015; D'SILVA et al., 2017;
VIDYASANKAR, 2017)

Stream processing on CEP (MARGARA; SALVANESCHI, 2013; CAR-
BONE et al., 2015; KHARE et al., 2015;
BAUMGÄRTNER et al., 2015; ZIMMERLE;
GAMA, 2018; DAYARATHNA; PERERA,
2018)

Machine Learning capabilities (MAYER; MAYER; ABDO, 2017)

Implementation cases and metrics (CUGOLA; MARGARA, 2012; RISCH;
PETIT; ROUSSEAUX, ; VELASCO; MO-
HAMAD; ACKERMANN, 2016; BAPTISTA
et al., 2016; ICHINOSE et al., 2017; CANIZO
et al., 2017; YADRANJIAGHDAM; YAS-
ROBI; TABRIZI, 2017; MANJUNATHA;
MOHANASUNDARAM, 2018)
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Table 2.2: Requirements and correlation to existing models
Requirement EPTS

Reference
Architecture

IBM
Conceptual
Model

TIBCO
Business
Events

Oracle
CEP

Requirements from Section 2.1

R1 - A strategy for EPA composition No No No No

Requirement from Section 2.2.4

R2.1 - Support for batch introduction of events No Yes No No

R2.2 - Advanced Filtering No No No Yes

R2.3 - Incremental Model Training Yes Yes Yes Yes

Requirement from Section 2.2.5

R3.1 - Preprocessing Yes Yes Yes Yes

R3.2 - Alerts and Thresholds No Partial* Yes Partial*

R3.3 - Simple Counting and Counting within
Segmented Windows

Yes Yes Yes Yes

R3.4 - Joining Event Streams Yes Yes Yes Yes

R3.5 - Data Correlation, Missing Events, and
Erroneous Data

Yes Yes Yes Yes

R3.6 - Interacting with Databases No No Yes No

R3.7 - Detecting Temporal Event Sequence
Patterns

Yes Yes Yes Yes

R3.8 - Tracking Yes Yes Yes Yes

R3.9 - Detecting Trends Yes Yes Yes Yes

R3.10 - Running the Same Processing Mech-
anisms in Batch and Realtime Pipelines

No No Yes No

R3.11 - Detecting and Switching to Detailed
Analysis

No No No Yes

R3.12 - Using a Model Yes Yes Yes Yes

R3.13 - Online Control No No No No
* Applies to models that indicate the possibility to trigger alerts based on simple threshold conditions, but not for more
elaborated circumstances such as rate of increase



3. A CEP Model for EPA Compositions

3.1 Introductory Aspects

This section introduces our CEPmodel proposal. It consolidates features from existing

CEP models by identifying and isolating common behaviours of Event Producer, Event

Consumer and EPA (Section 3.6.1), as well as by indicating segregation of responsibilities

through the usage of Channels, Event Fetchers and Event Emitters (Section 3.7.1), which

support interaction among CEP components.

3.2 Overview

Figure 3.1 presents an overview of the model. Definition elements (highlighted in

grey) are presented under the context of the DDD layers, depicted within a UML stereo-

typed package notation to denote their affinity to the purpose of the layer.

According to the expected purpose of domain layer components, described in Sec-

tion 2.2.2, the following CEP Definition Elements (and dependencies) are represented as

members within this layer: Event & Event Type, driving event processing; and Context,

correlating processing of event instances over dimensions.

Event represent occurrences of real world or simulations. Such instances are classi-

fied according to EventType, which determines the type of event originally produced (or

derived). For instance, event types may correspond to a sensor update, a money deposit,

or a fraud indication alert. Event data values captured during occurrences is maintained

as EventAttribute (e.g., amount of money withdrawn). Those entities were described

22
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Figure 3.1: CEP Model - High Level Diagram

in Section 3.4.1.

In addition, a domain component named Context defines how instances of events

can be associated, as described in Section 3.4.2. Events are correlated by EPA nodes

that consider partitions of based on event attributes. This provide meaningful aggrega-

tion features for event processing based on timeframe, on historical events, or on any

attribute (respectively via TemporalContext, EventContext and SegmentedCon-

text). Also, ContextComponent and ContextComposite were designed for Context

compositions: ContextComponent provides the abstraction for partitioning events into

processing groups, and is used by ContextPartitioner as it dynamically provides in-

stances of ContextEPAComposite for such activity (as described in Section 3.6.2).

EventProducer and EventConsumer represent interaction of systems (usually ex-

ternal to the scope of our model) with CEP solutions, that feed or consume data through

specific mechanisms. As such, they fulfill the responsibility assigned to user interface

components, as per Section 2.2.2. Event occurrences are originally introduced into the
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CEP systems via EventProducer nodes (Section 3.5.1). Their output may be referenced as

raw events, as opposed to derived events, created by EPAs. EventConsumer entities, on

the other end, consume events from CEP platforms (Section 3.5.2).

EPAs are the heart of application layer, since they are orchestrated to process events ac-

cording to business goals. They share common behaviors with EventConsumer (consump-

tion via channel) and EventProducer (publishing via channel). This aspect is represented

in this model via interface multiple inheritances (from EventFetcher and EventEmit-

ter infrastructure interfaces). EPAComposite abstracts the functionality of a composed

EPA by delegating its processing to inner components (Section 3.6.1).

EPAs can provide different processing strategies. For instance, they may process

events isolated from other events (which happens in StatelessEPA), or occurrences

can be correlated (by StatefulEPA), for which comparisons may need to be considered

within partitions of incoming events.

Two Components, positioned under infrastructure layer, allow interaction among el-

ements from higher layers, supporting their requirements via technical mechanisms to

achieve: message sending (for services), persistence and information retrieval for shared

data; etc.: Channel, which brings mechanisms for interacting with the distribution plat-

form; and GlobalState, with mechanisms for integration with external data sources.

The event distribution platform allows event retrieval through topic subscription pat-

terns. Access to this functionality and communication to and from this platform, is rep-

resented by the Channel abstraction provided in infrastructure layer, described in Section

3.7.1.

GlobalState provides EPA access to more information than what can be obtained from

each event (see Section 3.8). ReferenceDataGlobalState is able to map information

from data stores into ReferenceDataAttributes instances, whereas EventGlobal-

State can be used to pull event batches that can be introduced to CEP platforms through

scheduling tasks provided by OfflineEventLoader (see Section 3.6.3).
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3.3 Model Compartments

Partitions of our model (referred to as sub-model) are defined by considering the as-

signment of components into cohesive units of analysis, according to DDD layers (Section

2.2.2) and the overview model (Section 3.2). As highlighted in the overview, most rele-

vant entities on each sub-model are marked in grey (entities marked in white are detailed

in another sub-model, that best meets their responsibilities).

Unified Modeling Language (UML) provides a good amount of flexibility to repre-

sent compositions of software components, plus it is well known among IT profession-

als (THÖNE; DEPKE; ENGELS, 2002). Its stereotypes were used to indicate design pat-

terns presented in Chapter 2, leveraging its extensibility mechanisms to better clarify the

meaning of those classes. For instance, applicable patterns related to DDD building blocks

(Section 2.2.2) were prefixed with ”ddd_”. Java Stream Lambda Constructs (from Section

2.2.3) were indicated along with components from this model.

3.4 Domain Layer

This layer is responsible for representing concepts and information about the business

(e.g., entities and rules). Technical details of storing it are delegated to the infrastruc-

ture (EVANS, 2004).

3.4.1 Event & Event Type

Event represents occurrences captured from real world instances or inferred from

simulated scenarios. Those may happen in the form of updates triggered by monitoring

processes, operation exceptions, alerts indicating abnormal behavior etc.

The diagram in Figure 3.2 represents elements related to an Event instance:

• EventHeader maintains characteristics of the event instance (such as occurrence

time), and can be recognized by an event processor which may not need to under-

stand the remainder of the event structure. It holds an instance of:



CHAPTER 3. A CEP MODEL FOR EPA COMPOSITIONS 26

– EventType, carrying a set of filter attributes (filterAttributes) contain-

ing payload attribute names. Subscribers can define filters based on those at-

tributes. This can be helpful when high volumes of data are involved, since we

can reduce the content amount to bring just the needed business attributes in

the EventPayload, which relates to requirements R2.2 and R3.1 from Table

2.2;

– EventEmmiter, a shallow clone of the originator instance (EventProducer,

for introduced events, or EPA, for derived events), helpful for further filtering,

relating to requirement R3.1 from Table 2.2;

• EventPayload contains values for a set of EventAttribute (which extends the

DataAttribute - Section 3.4.3 with a derived attribute that indicates if this instance

has been originally produced by the source system or derived by CEP);

• EventOpenContent allows to store a free-format annotation, e.g., for external

systems information. It is an optional attribute.

- i d
-description : String
-parent : EventType

<<ddd_ValueObject>>
EventType

-derived : boolean
EventAttr ibute
T extends Serializable

-annotation : Optional<String>
EventOpenContent

-attributeValues : Set<EventAttribute>
EventPayload

-occurrence : Timestamp
-chronon : TemporalUnit
-detection : Timestamp
-filterAttributes : Set<String>
-source : EventEmitter
-certainty : Optional<Float>
-causers : List<eventId>

EventHeader

- i d

<<ddd_Event>>
Event

<<Interface>>
EventEmitter

source

+createEvent(tp : EventType, occ : Timestamp, chrn : TemporalUnit, src : EventEmitter, attr : Set<EventAttribute>, annot : String) : Event

<<Singleton>>
<<ddd_Factory>>

EventFactory

parent

#name : String
#value : Optional<U>
+getValueType() : Class<?>

DataAttr ibute
U extends Serializable

domain.event

type

<<Enum>>
<<ddd_ValueObject>>

TemporalUnit
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Figure 3.2: Event Diagram

Events can be created by Event emitters via a common implementation artifact named

EventFactory. They are supposed to provide data for the definition of all event infor-

mation. The factory instantiates Event and all composed parts (at least a Header and a

Payload) based on incoming parameters, and provides dynamic values, such as the time at
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which the event enter the CEP platform. A Singleton (GAMMA et al., 1995) stereotype

suggests a unique instance, which can be accomplished via a decoupled service.

Tables fromSectionB.1 onAppendix B outline attributes andmethods related tomodel

components from this section.

3.4.2 Context

A Context represents the conditions that are used to group event instances so that

they can be processed in a related way (ETZION; NIBLETT; LUCKHAM, 2011).

Hierarchies of Context (Figure 3.3) allow the possibility of composing EPAs to express

scenarios such as raising an alert if someone attempts to make more than three withdraws

within a 24-hour period. We can use EPA agents related to windows that start whenever a

given customer withdraws money from an ATM machine, and close 24 hours later. Com-

positions of Context through Window abstractions are depicted in Section 3.6.2.

 getinnerWindowId() : Function<Event, String>
 getInnerPertinence() : Predicate<Event, Event>

Context

- i d
+getWindowId(initial : Event) : String
+isPertinent(Event initial, Event current) : Boolean
+getStartMoment() : Optional<DateTime>
+getEndMoment() : Optional<DateTime>

<<ddd_Enti ty>>
ContextComponent

 children : Set<Context>

<<ddd_Aggregate>>
ContextComposite

-unit : TemporalUnit
-size : long

TemporalContext
-partitionCriterion : Predicate(Set<EventAttribute>)

SegmentedContext -acceptCriterion : Predicate(Set<EventType>)
-completenessEnforced
-orderEnforced

EventContext

-HOUR
-DAY
-MONTH

<<Enum>>
<<ddd_ValueObject>>

TemporalUnit

-initialMark : Time

FixedTemporal
Context

<<ddd_Aggregate>>
ContextEPAComposite

Window

Powered By Visual Paradigm Community Edition

Figure 3.3: Context Diagram

A context may consist on one or more instances of the following types:

• TemporalContext - a window based on this partition comprises events that hap-

pen during its time frame, and every event starts a new window lasting an amount

of computed time based on TemporalContext size and TemporalUnits;

• FixedTemporalContext - similar to TemporalContext, but an initial mark con-
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stitutes the Window start (e.g. 00:00 hours, instead of the original occurrence time).

Hence, successive events within the same time range are assigned to the same Win-

dow and will not trigger a new one;

• SegmentedContext - creates windows based on attribute values, where each dis-

tinct combination of values relates to a different window;

• EventContext - creates windows based on a list of event types that represents the

occurrence of a scenario of interest to the business.

Composed Context, are used along with ContextEPAComposite (Section 3.6.2) to pro-

vision components that form the basis for event grouping, relating to requirement R3.3

from Table 2.2.

Tables fromSectionB.2 onAppendix B outline attributes andmethods related tomodel

components from this section.

3.4.3 Data Attribute

The DataAttribute (Figure 3.4) presents the minimal common structure to rep-

resent relevant business data (such as the attributes within event payload) or technical

information (e.g., maximum timeout value). Its template parameter indicates the usage

of dynamic type casting to explicitly restrict U to Serializable types, so that the state of

objects can be converted and restored as needed.

Two subtypes are provided: EventAttribute, referenced in Section 3.4.1, and Ref-

erenceDataAttribute from Section 3.8.

EventAttr ibute

U extends Serializable

Event

ReferenceDataAttribute

U extends Serializable

#name : String
#value : Optional<U>
+getValueType() : Class<?>

<<ddd_ValueObject>>
DataAttr ibute

U extends Serializable
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Figure 3.4: Data Attribute Diagram

Tables fromSectionB.3 onAppendix B outline attributes andmethods related tomodel
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components from this section.

3.5 User Interface Layer

This layer provides integrationwith external actors, whichmight sometimes be another

computer system rather than a human user (EVANS, 2004).

3.5.1 Event Producer

The EventProducer representation is designed according to its relevant responsi-

bility assignment (LUCKHAM, 2002; ETZION; NIBLETT; LUCKHAM, 2011) : inject

event data into CEP Platform through publishing operation, via a Channel instantiated

through ChannelBroker, as shown in Figure 3.5.

EventType

-types : Set<EventType>
PublishPattern

-annotation : Optional<String>
+EventProducer(ch : Channel, p : Optional<PublishPattern>)

<<ddd_Service>>
EventProducer

-publishEvents(pattern : Optional<PublishPattern>, events : List<Event>, channel : Channel)

<<Interface>>
EventEmitter

<<ddd_Service>>
Channel

Offl ineEvent
Loader

Event

< < u s e > >
getGlobalChannel

querybyevent multiform event passed as 

<<Singleton>>
<<ddd_Factory>>

ChannelBroker

EventFactory
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Figure 3.5: Event Producer Diagram

Events are published by an EventProducer according to the EventEmitter interface.

This interface has a private implementation (see Section 2.2.3) that validates output events

based on a Set of EventTypes - indicated on PublishPattern, which precedes the intro-

duction of events, relating to requirement R3.1 from Table 2.2 - and delegates publishing

of derived events to a Channel instance.
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Producer instances relate to external systems, sometimes with an implicit logic to gen-

erate the events, whereas an EPA's logic is always explicit (since it is always an internal

CEP component). The absence of fetching mechanisms is another difference between

them.

AnEventProducer has an extension named OfflineEventLoader that providesmeans

for offline introduction of events via batch mechanisms, as described in Section 3.6.3.

Tables fromSectionB.4 onAppendix B outline attributes andmethods related tomodel

components from this section.

3.5.2 Event Consumer

The EventConsumer node (Figure 3.6) represents services capable of pulling event

data from CEP platform. This operation is supported by a Channel, instantiated from

ChannelBroker.

EventAttr ibute

T extends Serializable

EventType

-filterByTypes : BiPredicate<Event, Set<EventType>>
-map : BiFunction<Event, Set<EventAttribute>, Event>
-filterByHeader : BiPredicate<Event, EventHeader>

SubscriptionPattern

-annotation : Optional<String>
+EventConsumer(c : Channel, s : SubscriptionPattern)

<<ddd_Service>>
EventConsumer

<<Singleton>>
<<ddd_Factory>>

ChannelBroker

-subscribeEvents(pattern : SubscriptionPattern, channel : Channel) : Stream<Event>

<<Interface>>
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getGlobalChannel

<<ddd_Service>>
ChannelEvent

<<ddd_Service>>
ContextPartit ioner

getWindowId
ContextComponent
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Figure 3.6: Event Consumer Diagram

Event consumption is performed through EventFetcher interface private implemen-

tation (subscribeEvents), by inspecting events according to SubscriptionPattern.

This pattern enables simple filtering and projection operations for EPA subclasses. Sub-

scriptionPattern guides the Channel to bring data from topics, partitions or segments (dep-

pending on features from distribution platforms). Filtering relates to: EventType (filter-

ByTypes) or EventHeader (filterByHeader) - both based on a BiPredicate acceptance cri-

teria used for Event data inspection. It also provides a BiFunction map implementation

for reducing event content size on filtered occurrences, based on relevant EventAttributes.
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Using strategies to position Channel to pull subsets of messages closer to distribution plat-

form, this can minimize latency in data traffic (FALK; GURBANI, 2017), which relates

to requirements R2.2 and R3.1 from Table 2.2. BiPredicate and BiFunction, among other

streaming constructs, were described in Section 2.2.3.

The processing activities for this component are in many cases out of the scope of

CEP components, since they relate to external systems, e.g., dashboard and reports from

closer-to-business-goals events derived by EPAs. An exception case is an internal imple-

mentation of an EventConsumer named ContextPartitioner. It allows a continuous

stream of events from theGlobalChannel to be partitioned for processing, providingmeans

for dynamic EPA Compositions based on context (as documented in Section 3.6.2).

Tables fromSectionB.5 onAppendix B outline attributes andmethods related tomodel

components from this section.

3.6 Application Layer

This layer defines the jobs the software is supposed to do and leverages domain objects

to orchestrate meaningful tasks to the business (EVANS, 2004).

3.6.1 Event Processing Agent

Event Processing Agents (EPA) perform event processing tasks and monitor events

to detect certain patterns of information. When patterns match, they trigger actions that

output events.

This section presents a generic representation that addresses aspects related to the strat-

egy used for the composition of EPA, and also the interaction of this element with other

CEP definition elements (ETZION; NIBLETT; LUCKHAM, 2011; LUCKHAM, 2002).

Due to the complexity to represent details from all EPA derivations, according to their dis-

tinct features, we chose present a low degree of detail at first, as in Figure 3.7 and detail

it further on the following sections.

Similarities identified on EventConsumer and EPA motivated the creation of Event-
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Figure 3.7: EPA Overview Diagram

Fetcher interface (with common behaviors). Analogously, EventProducer and EPA gen-

erate events via EventEmitter interface, in this case using EventFactory.

EPAComponent defines the common behavior for EPAs (designed as per composite

pattern (GAMMA et al., 1995)) - it fetches events based on SubscriptionPattern (see Sec-

tion 3.5.2), establishes a communication channel for interactions with CEP actors (pro-

ducer, consumer and other EPAs), and delivers events according to PublishPattern (see

Section 3.5.1).

EPAComposite aggregates EPAs, and delegates its processing rules to an organized

set of EPAs. Operations within EPA composition are isolated from global processes (ET-

ZION; NIBLETT; LUCKHAM, 2011), and here they are performed using a segregated

channel (not the global channel), as presented in Figure 3.8. In this picture, we can observe

two EPAs (Claim Filter and Enricher) that interact directly with the global channel. We
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also have two EPAs (Aggregate and Content Filter) that present interactions constrained to

operate via an inner channel, and an EPAComposite, which encompasses both. The latter

intermediates access, for those inner EPAs, from the global channel (delivering subscribed

events from global channel - based on its SubscriptionPattern - to its inner channel) and to

the global channel (delivering events produced by those to the global channel, according

to its PublishPattern). Both global and inner channels are provided by a ChannelBroker

(see Section 3.7.1). This addresses the gap that relates to requirement R1, from Table 2.2.

EPAComposite

Produção de Eventos 
Padronizados 

Producer

Global 
State

Processamento Integrado

EPA  - Enricher

EPA - Claim Filter

Global Channel

EPA - Content FilterEPA - Aggregate

Consumer

To Event Fetchers from ChannelFrom Event Emitters to Channel

Inner Channel

Figure 3.8: EPA Composition

Event streams are usually infinite feeds, but operations may be defined in terms of

partitions (known as event windows). ContextEPAComposite are EPA compositions

dynamically provisioned based on window partitions, and are further detailed in Sec-

tion 3.6.2.

Also, a GlobalState element is used by EPAs to fetch data outside the scope of events

(e.g., business data for enriching events). This is performed by ReferenceDataGlob-

alState, further demonstrated in Section 3.8.

At the bottom of Figure 3.7 we see StatefulEPA and StatelessEPA extensions,

further detailed in Section 3.6.1.1 and Section B.8.

Tables fromSectionB.6 onAppendix B outline attributes andmethods related tomodel

components from this section.
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3.6.1.1 Stateless EPA

StatelessEPA is an abstract class that encompasses all EPA that processes each input

event independently of any other event (i.e., no state is maintained). It also includes a

derivation step for the output.

This element does not present specific methods and attributes, but allows aggregation

of correlated Stateless EPA to provide split functionality, as described below.

EPA
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<<ddd_Service>>
StatelessEPA

-map : Function<Event, Event>
TranslateEPA

-map : BiFunction<Event, Set<ReferenceDataParameter>, Event>
EnrichEPA
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SplitEPA

EventFactory

-refDataGlobalStateId
-searchedData : ReferenceDataAttribute
-newAttributeMapper : Function<ReferenceDataAttribute<X>, EventAttribute<Y>>

<<ddd_ValueObject>>
ReferenceDataParameter

EventAttr ibute

T extends Serializable

ReferenceData
At t r ibute

X extends Serializable

ReferenceData
GlobalState

Channel

ReferenceData
GlobalState

-attrs : FilterAttributes
StatelessFilterEPA

-rejectFilter : Predicate<Event>
-acceptFilter : Predicate<Event>

<<ddd_ValueObject>>
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Figure 3.9: Stateless EPA Diagram

The diagram of Figure 3.9 presents four Stateless EPA Types that are described above.

• StatelessFilterEPA: filters events based on explicit criteria (from FilterAt-

tribute) for acceptance or rejection of those elements.

• TranslateEPA: receives a single event and generates another event according to

the Function implementation for map attribute (which relates to requirement R3.2

from Table 2.2).

• EnrichEPA: takes a single input event, uses its attributes to query information from

a Global State (relating to requirement R3.6 from Table 2.2), and finally creates a

derived event (reusing EventFactory) with new attributes according to the BiFunc-

tion logic frommap parameter (relating to requirement R3.11 from Table 2.2 if trig-
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gered by PatternDetectEPA, from Section 3.6.1.3). Each new EventAttribute value

is calculated based on ReferenceDataParameter, through establishing connectivity

to ReferenceDataGlobalState based on refDataGlobalStateId; then, fetching

a ReferenceDataAttribute according to its template, whose value (of generic type

X) is used as a parameter to newAttributeMapper transformation Function to de-

rive a new EventAttribute (of generic type Y). The reason why different letters were

chosen is to represent scenarios where X and Y are different types.

• SplitEPA: takes as input a single event and creates a collection of events via mul-

tiple StatelessEPA instances. Therefore, leveraging StatelessFilterEPA, Transla-

teEPA and EnrichEPA implementations to derive events. This is a special case of

stateless EPA composition.

Tables fromSectionB.7 onAppendix B outline attributes andmethods related tomodel

components from this section.

3.6.1.2 Stateful EPA

An EPA is stateful if the way it processes events is influenced by other event instances

that have been processed by it (ETZION; NIBLETT; LUCKHAM, 2011; ARTIKIS et al.,

2012). For instance, suppose an event rises every time a quantity of a given product is

sold, and we need to find the total sold quantity. To continuously compute a running total,

we can use a stateful EPA that emits new events containing the updated total as it receives

a sale event - so events emitted by this agent depends on all the events that it has previously

received (ETZION; NIBLETT; LUCKHAM, 2011).

The diagram of Figure 3.10 presents the three StatefulEPA types:

• StatefulFilterEPA: is similar to StatelessFilterEPA, but, in addition, its pro-

cessing considers previous event instances (for instance, fetching lastN occurrences,

based on StatefulFilterOperator). Relates to requirement R3.1 from Table

2.2.

• AggregateEPA: produces an output event derived as a function of the incom-

ing stream of events (e.g., a sum operation). This aggregation is computed incre-

mentally, via a reduceOperator (a BinaryOperator) along with an identity value
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Figure 3.10: Stateful EPA Diagram

(reduceOpIdentity) for the accumulation function, relating to requirement R3.3

from Table 2.2. The applicable events can be further reduced through the usage of

a threshold attribute and a comparison implementation (via BiPredicate).

• ComposeEPA: performs "join" operations of events coming from two input streams.

A subscription method is used for matching event instances of the channels accord-

ing to a condition expression - relating to requirement R3.4 and R3.5 from Table

2.2 (if composed along with a PatternDetectEPA, from Section 3.6.1.3). A map

BiFunction outputs new derived events from each matched pair of source events.

Tables fromSectionB.8 onAppendix B outline attributes andmethods related tomodel

components from this section.

3.6.1.3 Pattern Detect EPA

Pattern Detect agents explore relationships between events to bring meaningful value

to the business. For instance, a health monitor system may infer a standard behavior of

monitored values for each patient based on sensors (tracking blood pressure, pulse, respira-

tory rate, etc.) and provides alerts if a combination of factors (including eventual absence

of measurements) indicates abnormality (ETZION; NIBLETT; LUCKHAM, 2011).

These agents are supposed to be processed under ContextEPAComposite constructions
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(Section 3.4.2) with a TemporalContext, so that statistics are continuously provided from

aggregated groupings of data.

The diagram of Figure 3.11 presents PatternDetectEPA types of pattern detection

strategies:

• BasicPatternDetectEPA: simply detects events matching a set of EventType

instances (optionally ordered over time), ordered through time (relating to require-

ment R3.7 from Table 2.2) or not (PatternSequence attribute). A Pattern-

Modal attribute indicates if at least one instance of all event types is met (ALL), if

the set is partially met (SOME) or not met (NONE - relating to requirement R3.5

from Table 2.2);

• ConditionalPatternDetectEPA: extends BasicPatternDetectEPA, but requires

condition to be satisfied by matching events, defined via Predicate;

• TrendPatternDetectEPA: detects trends based on how event attribute values

change over time. This is performed by correlating pairs of subsequent Event in-

stances via trendCheck, a BiPredicate function. Absolute or relative values can be

evaluated (e.g., relative distance to a target decreasing at a certain speed). This re-

lates to requirements R2.3, R3.2, R3.8 and R3.9 from Table 2.2. Specific conditions

may trigger events that further launch EnrichEPA (from Section 3.6.1.1, relating to

requirement R3.11 from Table 2.2) or dispatch a process via GlobalState (from Sec-

tion 3.8, relating to requirement R3.13 from Table 2.2).

On top of AggregateEPA features (see Section B.8), PatternDetectEPA instances may

consume historical events, and are configured with a MatchingPolicy, which indicates

how to proceed whenever events satisfy the expected pattern. Each policy is based on:

• EvaluationMode: determines if this EPA generates output incrementally or at the

end of the temporal context;

• ExcessMode: characterizes the behavior of this EPA when several instances of the

same event type occur: we can either consider the first, or every one, or override

with the last occurrence;
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Figure 3.11: Pattern Detect EPA Diagram

• ReuseMode: defines if event instances are to be discarded after consumption or

considered in subsequent analyses;

• OrderMode: specifies a comparison parameter for event ordering. For temporal or-

der, occurrence or detection timemay be used. Another option is the stream position

of the event, or a user-defined element (via a Comparator function on Event).

Tables fromSectionB.9 onAppendix B outline attributes andmethods related tomodel

components from this section.

3.6.1.4 Clustering Over Streaming

Continuous processing implies adjusting prediction models while streaming data, ac-

cording to unsupervised learning algorithms that deal with dynamic data distributions that

reflect the external world (MAYER; MAYER; ABDO, 2017). An extension of Pattern

Detect EPA, named ClusteringEPA, offers our model a functionality for continuously

assigning groups of related events, based on their features, into a predefined number of

clusters (k). This relates to requirement R2.3 and R3.12 from Table 2.2.
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Relevant event characteristics for clustering via EPA are represented in Figure 3.12.

A template parameter C indicates a data type associated to one or multiple attributes - the

latter is known as a multidimensional type.

A parameter was included to balance the relative importance of new data versus his-

torical data (via timeToLive attribute), allowing faster reaction to changes.
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Figure 3.12: Clustering Diagram

Although this component has been initially based on K-Means (FALK; GURBANI,

2017), the model is not constrained specific clustering implementations - for instance,

as we find Manhattan Distance more relevant than Euclidean Distance due to outliers, we

might opt for a strategy based on K-Median (WHELAN; HARRELL;WANG, 2015). The

core aspect is that any implementation should minimize the distance of the nodes within

the cluster, while maximizing the distance between groups, through the following steps,

based on Freeman (2015):

1. start with centroids (a central tendency value for each cluster) as an output from

previous iteration or, initially, randomly assigned;

2. add the new event/events (depends on triggering mechanisms) to clusterElements;

3. discard occurrences that should be expired (where the elapsed time since event oc-

currence > timeToLive), meaning it will favor recent occurrences;



CHAPTER 3. A CEP MODEL FOR EPA COMPOSITIONS 40

4. for each item from clusterElements, compute the distance to every centroid - e.g.,

sum of squared distance between the the item's set of attributes and each centroid´s

set of attributes. This is performed via the implementation provided by distanceIn-

ference;

5. assign every occurrence to the nearest centroid, according to the minimum distance

above, in clusterCentroids map, updating values as needed;

6. for each cluster, re-compute the centroids from all measurements assigned to it (re-

generateCentroids), and reassign those values into centroids, to be used in step 1

when applicable.

Steps 1-6 are performed until our convergence criterion is satisfied (i.e., when cluster

assignments in step 5 remains the same since last interaction), or the number of iterations

exceed the value set in maxIterations. Once results are inferred, it may trigger events that

further launch EnrichEPA (from Section 3.6.1.1, relating to requirement R3.11 from Table

2.2) or dispatch a process, e.g. via GlobalState (from Section 3.8, relating to requirement

R3.13 from Table 2.2).

In our model, we can choose to use disjoint or intersecting subsets of events from the

stream for training and inference operations (through trainingPercentage and prediction-

Percentage attributes). For exclusively predictive cases (i.e., no training data), we can

simply run step four (distanceInference, using the latest set of centroids).

ClusteringEPA instances are usually nodes within EPA compositions, bound to a con-

text, but can also be standalone nodes, processing infinite streams - for which case time-

ToLive may not be of assistance.

Tables from Section B.10 on Appendix B outline attributes and methods related to

model components from this section.

3.6.2 Context Partitioner

The processing of continuous event streams associated to a context is performed ac-

cording to a segmented event grouping, identified as the Window component, depicted in

Figure 3.13, which comprises related events.
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There are cases where an event arrival demands the creation of a Window instance,

and others where it simply becomes part of an already existing Window. An event that

generates a Window is its initial event. So, for instance, in TemporalContext, a Window

triggered by initial event e1 in time instance t1 comprises events e2 ... en occurring be-

tween t1 and t1+(size x TemporalUnits). Here, event e2 also starts a new Window which

lasts until t2+(size x TemporalUnits), comprising all events in that interval. In FixedTem-

poralContext, on the other hand, event e2 will only be assigned to the window triggered

by event e1, and will not launch another Window.

The EPA that handles event processing within context segments is ContextEPACom-

posite. Dynamic provisioning and decommissioning of this agent happens according

to the pertinence of events to windows, as per the steps described below. When used

along with Context (Section 3.4.2) to provision components that form the basis for event

grouping, it relates to requirement R3.3 from Table 2.2.

1. As an event comes in, ContextPartitioner first checks if there is a requirement to

create a new Window. It generates a window id based on the Context composition

structure (consolidating - via concatenation or othermeans - all inner id pieces, using

getInnerWindowId implementation from Context subclasses - see Section 3.4.2).

2. If the generated id is not among its Set of window ids, a newWindow is dispatched,

and set into a new ContextEPAComposite instance, based on its template (see con-

structor in Table B.53). This EPA runs in a separate thread, with an inner Channel,

for as long as the Context is active (and it is no longer active, the EPA terminates).

3. Meanwhile, all other active ContextEPAComposite instances are also pulling sub-

scribed events from their inner Channel, based on the pertinence criteria.

Figure 3.14 demonstrates an example of event windows based on an ContextCompo-

nent composed of an Attribute context (based on sensor ids) and a FixedTemporal context

(defined with an amount of 2 days). The red boxes denotes single stateful filter EPAs that

act within specific contexts, outputting minimal sensor reading value for a sensor on a

date range. The picture represents what happens in day 5. The lower right composition

is decommissioned, while a new one (triggered by ContextPartitioner), in the upper right
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Figure 3.13: Context Partition Model

corner, captures all events from Sensor A from this date on. Those events will also be

processed by the upper left composition, which subscribes for Sensor A occurrences, and

ignored by the lower left composition, which only fetches Sensor B occurrences.
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Figure 3.14: EPA Window Partitioning (Day 5)

Tables from Section B.11 on Appendix B outline attributes and methods related to

model components from this section.
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3.6.3 Offline Event Loader

As illustrated in Figure 3.15, OfflineEventLoader is an infrastructure component

that leverages Producer functionality for an implementation that introduces batches of

events from source systems (usually external repositories) into CEP platforms. Offli-

neEventLoader contains an instance of EventDataGlobalState (see Section 3.8) to fetch

an accumulated list of events from its data source. Those events are further launched into

CEP channels via the EventEmmitter implementation. This design reflects the CEP strat-

egy adopted by D'silva et al. (2017), and relates to requirements R2.1 and R3.10 from

Table 2.2.

EventType

EventProducer

EventEmitterChannelGlobalState

+getQueryByDateExpression(init : DateTime, end : DateTime) : String
+getQueryByEventExpression(template : Event) : String
+query(expression : String) : List<T>

EventGlobalState
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+OfflineEventLoader(ch : Channel, p : Optional<PublishPattern>, eventGlobalStateId)
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Event
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Figure 3.15: Offline Loader Diagram

An optimization for this component to act closer to real time updates is the adoption

of continuous query mechanisms, comprising of sequences of one-time queries adjoined

together (VIDYASANKAR, 2017) - as long as it does not impact source systems.

Tables from Section B.12 on Appendix B outline attributes and methods related to

model components from this section.

3.7 Infrastructure Layer

This layer provides technical mechanisms to support higher layers, e.g., message send-

ing for application and persistence for domain. It may support the interactions between

the layers through an architectural framework (EVANS, 2004).
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3.7.1 Channel

Instances of Channel (Figure 3.16) capture events from event emitters, placing them

on an event distribution platform, and route selected instances of events from there to

event fetchers. Channel provides filtering mechanisms, and intermediates all accesses

to and from the stream platform. Using such a distribution platform for asynchronously

integrated and loosely coupled CEP components favors overall performance - EPA compo-

nents can be placed on different processes, allowing higher parallelism (ETZION;NIBLETT;

LUCKHAM, 2011).

Event distribution is provided by means of two methods:

• publish, which introduces events into the stream platform, so that all interested sub-

scribers can pull it;

• consume, which fetches events generated from EPA or Producer instances. A Sub-

scriptionPattern (see Section 3.5.2) can assist reducing the amount of data fetched,

by establishing filters based on event types and attributes.

EPA

SubscriptionPattern

EPAComposite

EPAComponent

PublishPattern

EventProducer

EventEmitter

< < u s e > >
getGlobalChannel

EventConsumer

< < u s e > >
getGlobalChannel

< < u s e > >
getGlobalChannel

-globalChannel : Channel
-innerChannels : Map<Integer, Channel>
+getGlobalChannel() : Channel
+getCompositeEPAChannel(epaComponentId : Integer) : Channel

<<Singleton>>
<<ddd_Factory>>

ChannelBroker

< < u s e > >
getCompositeEpaChannel

EventFetcher

< < u s e > >
getGlobalChannel

-encodeEvent : Function<Event, EncodedEvent>
-decodeEvent : Function<EncodedEvent, Event>
-streamPlatformConnectivitySettings : Properties
+publish(events : List<Event>)
+consume(p : SubscriptionPattern) : Stream<Event>

<<ddd_Service>>
Channel

<<instant iate>>

-content

<<ddd_ValueObject>>
EncodedEvent

mudar 
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Figure 3.16: Channel Diagram
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A unique Global Channel instance provides the infrastructure to transport and route

messages between Producer, Consumer, and EPAs that do not relate to a composite EPA

(i.e., with no parent). On the other hand, for agents that participate on an EPA composition,

a segregated inner channel (one per composition) is provided to handle message exchange

between them (as explained on Section 3.6.1), therefore Channel relates to requirements

R1 from Table 2.2. A ChannelBroker singleton assists EPA by providing both global

and segregated Channel instances.

The Channel element is also responsible for optimizing event storage and traffic la-

tency over the transportation platform. Binary encodings are suggested for optimized siz-

ing and performance (MAEDA, 2012). Transformation from Event into EncodedEvent,

as well as the reverse conversion are provided for sending and retrieving information in a

compact form.

Implementations from known industry message brokers may be leveraged, such as

event stream partitions andwildcard support on topics (DOBBELAERE; ESMAILI, 2017)

for higher performance. Customizations may also be provided for higher workloads, such

as topic query projections during subscription (FALK; GURBANI, 2017).

Tables from Section B.13 on Appendix B outline attributes and methods related to

model components from this section.

3.7.2 Global State

A GlobalState is used by event processing agents whenever they need to access data

outside the scope of the event being processed. It refers to information such as reference

data, provided by ReferenceDataGlobalState, used - among other cases - to enrich

events and drive operational processing (e.g., timeout), relating to requirement R3.13 from

Table 2.2; and event stores, holding historical events (relating to requirement R2.1 and

R3.10 from Table 2.2), for which information is retrieved via EventGlobalState.

To provide data information from data stores, GlobalState interacts with a Glob-

alStateDataStore, relating to requirement R3.6 from Table 2.2. Connectivity to the

actual data store and interaction calls happens via the data store driver and are out of scope

of this study.
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Template parameter notations, presented in Figure 3.17, are indicated for Global-

State, its subclasses, and related data store (GlobalStateDataStore), and demon-

strates the usage of dynamic type casting through the following generic types:

• R: a generic type related to data store tuple (not necessarily RDBMS), for instance a

ResultSet1 or a Row2 - the record pointed by a cursor, as we iterate through records

fetched from a query.

• T: a generic type that relates either to an Event entity or to a mapped Reference-

DataAttribute.

<<ddd_Service>>
EventProducer

-id : String
-dataStorage : GlobalStateDataStore
+query(expression : String) : List<T>
#query(expression : String, mapper : Function<R, T>) : List<T>
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#persist(elements : Set<T>, mapper : Function<T, String>) : void
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R
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R

-globalStateRefs : Map<String, GlobalState>
+getReferenceDataGlobalState(globalStateId) : Optional<ReferenceDataGlobalState>
+getEventGlobalState(globalStateId) : Optional<EventGlobalState>
+createEventGlobalState(ds : GlobalStateDataStore<R>, rowType : Class, queryMap : Function<R, Event>, updateMap : Function<Event, String>)
+createRefDataGlobalState(ds : GlobalStateDataStore, rowType : Class, queryMap : Function<R, ReferenceDataAttribute>, updateMap : Function<ReferenceDataAttribute, String>)

<<Singleton>>
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GlobalStateProvider
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Figure 3.17: GlobalState Model

In order to allowReferenceDataGlobalState to pull ReferenceDataAttribute using sim-

ple queries, AttributeContainer instances can be used to properly locate data structures -

e.g. a table name, defined under a schema name, where both are represented as Attribute-

Container with distinct AttributeContainerType, related via parent attribute.

Three methods (query, persist and findOne) support the functionalities for Reference-

DataGlobalState through the following way:
1https://docs.oracle.com/javase/7/docs/api/java/sql/ResultSet.html
2https://spark.apache.org/docs/2.1.0/api/java/org/apache/spark/sql/Row.html
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• EPAs use a GlobalState subtype, supplying either EventAttribute or Reference-

DataAttribute as a template to derive a search expression for the query call. If an At-

tributeContainer, for instance, is populated on a ReferenceDataAttribute template,

the query brings all attributes that belong to this container structure.

• EPA can invoke persist for Events or Attributes that need to be shared among other

EPAs. Mappings from those structures to the persistence command String is pro-

vided by updateMapper Function implementations, fromEventGlobalState andRef-

erenceDataGlobalState.

• The findOne call is used to fetch a unique instance that matches a template parameter

(e.g. a unique identifier). An Optional response may be empty if no instance (or if

more then one) applies.

Tables from Section B.14 on Appendix B outline attributes and methods related to

model components from this section.

3.8 Evaluated Requisites

Table 3.1 presents examples of correlations from the requisites from Table 2.2 and the

components designed for the proposed model, based on their provided features. Those

features were previously discussed over scenarios from Section 3.4.1 to Section . They

relate, each one, to one or more requisite descriptions, and their full coverage indicates

that our model complies to all mapped requisites.
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Table 3.1: Requirements and correlation to proposed model elements
Requirement Model Component(s)

R1 - A strategy for EPA composition EPA, Channel, Context & subclasses, and Con-
textPartitioner

R2.1 - Support for batch introduction of events OfflineEventLoader, GlobalState

R2.2 - Advanced Filtering EventHeader, SubscriptionPattern

R2.3 - Incremental Model Training PatternDetectEPA, ClusteringEPA

R3.1 - Preprocessing EventHeader, SubscriptionPattern, PublishPat-
tern, StatefulFilterEPA

R3.2 - Alerts and Thresholds TranslateEPA, TrendPatternDetectEPA

R3.3 - Simple Counting and Counting within
Segmented Windows

ContextComponent & subclasses, ContextParti-
tioner, AggregateEPA

R3.4 - Joining Event Streams ComposeEPA

R3.5 - Data Correlation, Missing Events, and
Erroneous Data

ComposeEPA and BasicPatternDetectEPA

R3.6 - Interacting with Databases GlobalState & subclasses

R3.7 - Detecting Temporal Event Sequence
Patterns

BasicPatternDetectEPA

R3.8 - Tracking TrendPatternDetectEPA

R3.9 - Detecting Trends TrendPatternDetectEPA

R3.10 - Running the Same Processing Mech-
anisms in Batch and Realtime Pipelines

OfflineEventLoader, GlobalState & subclasses

R3.11 - Detecting and Switching to Detailed
Analysis

TrendPatternDetectEPA, ClusteringEPA, En-
richEPA

R3.12 - Using a Model ClusteringEPA

R3.13 - Online Control TrendPatternDetectEPA, ClusteringEPA, Glob-
alState



4. Evaluation

This chapter presents the evaluation of our model proposal, which consists of the fol-

lowing exploratory studies:

• Industry Real Case Experiment - indicating the feasibility of an implementation

based on the model;

• Feedback from Industry Experts - a complementary evaluation related to the ca-

pability of our model to meet a set of thirteen requirements of real time streaming

analytics

4.1 Industry Real Case Experiment

To investigate benefits of our proposal, we implemented a scenario of a usage moni-

toring dashboard for a large company, using our application architecture model in a real

industry case.

4.1.1 Scenario Requirements

This solution captures user interactions with applications and monitors 208 systems,

used by more than 5.000 employees. The company is migrating IT infrastructure to the

cloud, and the dashboard main goals were: understand how critical each system was for

internal end users; estimate resources workload throughout different periods of the month;

and, assist on the definition of the most efficient strategy to provide virtual machine re-

sources.

49
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The solution provided utilization indicators per system, aggregated by day, weeks, or

any date range (Figure 4.1), and utilization summaries per user. Also, panels showing

measurement indicators per company sectors (Figure 4.2) were required. In this case,

an incremental processing strategy provided the classification of systems into 4 clusters,

shown in different colours according to their utilization intensity (measured in terms of

the number of user sessions collected for each application on a specific period - from

red, for the ones with minimum utilization, going to yellow, green and blue - the latter

encompassing most used systems).

Figure 4.1: Usage Historic Report
Figure 4.2: Utilization Panel for a Corporate
Division

Monitored systems were classified as below, based on mechanisms for capturing their

usage-related events:

• Group 1 (G1): Systems with no authentication mechanisms - capture usage events

via web tracking;

• Group 2 (G2): Systems with push notification - newer systems use mechanisms to

publish events of specific topics into a messaging platform;

• Group 3 (G3): Systems integrated to a Central Authentication Service (CAS) - a

batch mechanism captures authentication events from a repository from CAS. This

is required due to access time restrictions to non-commercial hours. A cyclic rota-

tion for each G3 system is performed every 10 minutes to retrieve applicable Login,

Authentication Error and Authenticated Access events from CAS since last pro-

cessed timestamp;

• Group 4 (G4): Legacy systems that use its own authentication schema - a scheduled

job searches for this information in persisted audit trails (via continuous query or

API) and carries it to the broker every few minutes (next to real time). A corporate

data source provides maps from ids of system users to CAS corporate ids;



CHAPTER 4. EVALUATION 51

We present our solution scenario using UMLUse Case1 and Activity2 diagrams. Their

description is detailed along the following sections.

4.1.1.1 Event Input and Output

Picture 4.3 demonstrates how utilization occurrences, referenced as raw events, from

monitored systems (represented as producers) can be introduced into our CEP platform for

further processing, and also how resulting information from CEP processes can be useful

to the end user.

Utilization Monitoring - Input

Check G1
origin

<<Extend>>

Select latest events
from Audit Trail

<<Extend>>

Introduce Raw Events

Validate Raw Event
Information

<<Inc lude>>

Pull authentication
events

<<Extend>>

Consume Event
Reports

Track Web
Events

<<Extend>>

Track Web
Events

Consume Event
Reports

Pull authentication
events

Validate Raw Event
Information

Introduce Raw Events

G2 System

G3 System

G4 System

Select latest events
from Audit Trail

Check G1
origin

G1 System

Producer <<Inc lude>>

<<Extend>>

End user

<<Extend>>

<<Extend>>

<<Extend>>

IP Whitelist

Powered By Visual Paradigm Community Edition

Figure 4.3: Use Case - Event Input and Output

Tables 4.1 to 4.7 provides use case descriptions from this picture.

1Use Case Diagram - communicates the high-level functions of the system and the system’s scope, in-
cluding the relationship of actors (who interact with the system) to essential processes, as well as the rela-
tionships among different use cases. Source: https://developer.ibm.com/articles/an-introduction-to-uml/

2Activity Diagram - Shows the procedural flow of control while processing an activity. Source:
https://developer.ibm.com/articles/an-introduction-to-uml/
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Table 4.1: Use Case: Introduce Raw Events
Actor Producer

Precondition Users visit a monitored system, from groups 1 to 4

Postcondition Usage-relate events are introduced in CEP platform

Basic Flow

Producer relates to monitored corporate systems. Under the occurrence of events
related to those systems utilization, the system pulls information such as system id,
timestamp, user or origin of the request. The system also validates some of those
fields, for instance to guarantee that mandatory fields do not come as null. Then it
formats and populates an event data structures used to properly introduce
occurrence data in CEP platform. Systems from group 2 initiate the interaction
with event platform following the basic flow.

Alternate Flow 1

When producers are not capable to interact with CEP Platform. In this case special
components (such as jobs or listeners) must be implemented to capture utilization
information and introduce event data into CEP platform.

Alternate Flow 1a - See Track Web Events use case from Table 4.2

Alternate Flow 1b - See Pull CAS Events use case from Table 4.3

Alternate Flow 1c - See Pull Events from Audit Trail use case from Table 4.4

Table 4.2: Use Case: Track Web Events (extension from Table 4.1)

Precondition Systems from group 1 are accessed

Postcondition Event information is collected

Basic Flow

The system provides a web tracking listener that collects the origin IP, system id,
and a timestamp related to events. Those are sent by group 1 System according to
triggering mechanisms, via an HTTP POST request to this listener. Once this
information is received, system proceeds with the basic flow from Introduce Raw
Events use case (Table 4.1).

Exception Flow

If connectivity fails, the listener is not able to recover missing events.
Reconstruction can be performed if web server logs are active, by mimicking http
request triggering mechanisms on visited pages.
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Table 4.3: Use Case: Pull CAS Events (extension from Table 4.1)

Precondition Systems from group 3 are accessed, utilization information is
kept in CAS repository

Postcondition Event information is collected

Basic Flow

This requires a system component to connect and retrieve a batch of events from
CAS from time to time to pick up all occurrences introduced since the last
successful pull operation (it requires keeping the last successful timestamp). Once
this information is received, system proceeds with the basic flow from Introduce
Raw Events use case (Table 4.1).

Exception Flow

If an error aborts this process, missing events and new events (i.e., created after
last successful timestamp) are picked up on the next run.

Table 4.4: Use Case: Pull Events from Audit Trail (extension from Table 4.1)

Precondition Systems from group 4 are accessed, utilization information is
kept in their internal repositories

Postcondition Event information is collected

Basic Flow

Utilization information is mapped from audit trail data structures, within internal
tables from group 4 systems. A component needs to continuously query it to pick
up all events introduced since the last pull operation (it requires keeping the last
successful timestamp). Once this information is received, system proceeds with
the basic flow from Introduce Raw Events use case (Table 4.1).

Exception Flow

If an error aborts this process, missing events and new events (i.e., created after
last successful timestamp) are picked up on the next run.
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Table 4.5: Use Case: Validate Raw Event Information (inclusion from Table 4.1)

Precondition Event information is Introduced

Postcondition Event introduction process proceeds with valid information

Basic Flow

Event information is validated, for instance to guarantee that mandatory fields
(such as system id and event timestamp) do not come as null.

Alternate Flow 1 - See Check G1 Origin use case from Table 4.6

Exception Flow

If any validation rule is rejected, the incoming event is rejected.

Table 4.6: Use Case: Check G1 origin (extension from Table 4.5)

Precondition Systems from group 1 deliver events including IP information

Postcondition Evaluated information is valid

Basic Flow

Events coming from systems from group 1 do not bring user information, since
they do not relate to an authentication process - in this case the IP addresses coming
from user HTTP request is used to associate a group of related requests, and only
IP adresses that relate to monitored apps (according to a whitelist) are accepted.

Exception Flow

A validation rule rejects the introduction process aborts, rejecting the incoming
event.

Table 4.7: Use Case: Consume Event Reports

Actor End User

Precondition Raw events are processed and derived events are produced as
a result.

Postcondition Consolidated and detailed reports are provided to end users.

Basic Flow

Occurrences of interest, from raw and derived events, are consumed and organized
in data structures that provide end users their desired information at different
detailing levels.
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4.1.1.2 Event Processing Activities

Picture 4.4 demonstrates how raw events, introduced onCEP platforms as displayed on

Section 4.1, are further processed by CEP components to derive enriched and aggregated

events that show information in a level of detail that is useful for end users. Tables 4.1 to

4.4 provides activity descriptions from this picture.
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Figure 4.4: Event Processing Activities

Swim lanes from this picture 4.4 reflect flows that represent processing phases that

actually occur in parallel. But it clarifies dependencies between then - since output from

specific phases (i.e., derived events) serves as input to other phases. It clarifies how event

derivation can be performed in phases, where activities on each phase benefit from results

made available previously.

On phase I, we pick up any raw event and basically derive events that represent a

user session (i.e., a group of interactions with the system over a period of time). This

is done by pulling up login occurrences (where authentication applies), or leveraging IP

addresses and request timestamps (when user is anonymous). This phase is important

since, by discarding other event types, the population of events left for further processing

operations substantially reduces (as shown in Section 4.1.6). An activity for systems from

group 4 also helps standardising event attributes, enriching those with the corporate user
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id, mapped based on user id from origin system.

On phase II, starting from events delivered in phase I, event aggregates are provided

based on the amount of user sessions (or IP session) for a system, at a specific date.

On phase III, starting from events delivered in phase II, event aggregates are provided

according to system utilization summaries (total number of sessions per system) on a date.

On phase IV, starting from events delivered in phase III, the clustering algorithm is

dispatched to find four centroids according to utilization summaries - and a routine also

detects systems for which no session was observed.

On phase V we indicate that previously processed events provide online reporting

capabilities to dashboard users, including the possibility to drill down for detailed infor-

mation (for instance, retrieve the system with maximum utilization, then pull the user

sessions on that system over a period, or select the user / origin IP that triggered the max-

imum number of hits on the system for a period).

4.1.2 Assessment Goals

To evaluate quantitative metrics of this implementation, we used a performance evalu-

ation framework suitable for CEP (MENDES; BIZARRO; MARQUES, 2008, 2013) as a

reference. Metrics were collected on all Channel and EPA components. Producers present

a high variability among themselves (with a strong dependency to external systems), so

we evaluated event creation once incoming occurrences were ready to be cast into Event

instances.

We collected information for the week we had two major transitions of existing (non-

monitored) systems to the Dashboard - one with 15 systems, another with 22 systems,

indicating high loads of utilization events during 2 nightly time-frames. The following

measurements were provided:

• volumes of events processed, under distinct load scenarios - indicators provided

in this study distinguish regular load volumes (when utilization events are being

monitored online) and heavy loads (when batches of historical data are loaded in

parallel to online processing);
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• processing time, segregated by processes and components, indicating, indicating

which of these may be burdening event processing time;

• throughput indicators (an average indication of the number of events being pro-

cessed per unit of time), segregating measurements over processes and components,

indicating which of these may be burdening total event processing time.

We also evaluated correctness and completeness of results, i.e., observing the percent-

age of events correctly assigned and processed by EPA nodes, we defined the following

terminology, adapting from Fawcett (2006):

• true positive - events properly processed;

• true negative - events properly discarded;

• false positive - events incorrectly processed (either because they should have been

rejected, or because they resulted on incorrect outcomes);

• false negative - events incorrectly discarded (because they should have been pro-

cessed).

And based on that we calculated twometrics, defined as accuracy and precision (FAWCETT,

2006):

• the accuracy metric, obtained by dividing the number of events properly processed

(true positives) or properly discarded (true negatives) by the total number of events;

• the precision metric, obtained by dividing the number of events properly processed

(true positives) by the total of number of processed events (true positives plus false

positives).

4.1.3 Resolution Strategy

The solution architecture components were conceived using the proposed model as

a guidance, starting from its meaningful layer compartmentalization, at first clarifying

important concepts and components pertaining to each layer, then detailing elements that
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should be arranged in a solution to provide relevant functionalities in regard to the business

goals.

Further sections describe our journey when applying our model for the solution de-

picted in Figures 4.5 and 4.6. The first picture presents two systems for each group clas-

sification, to avoid over-polluting the diagrams.
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Figure 4.5: Solution from Model - Producers

4.1.3.1 UserInterface Layer

Starting from our monitored systems, which are our external input actors, and based

on their classification, we identify two cases that relate to Producer nodes, introducing

events into our CEP platform - groups 1 and 2; and two cases that require the usage of a

global state for integration with repositories and services - groups 3 and 4.

Systems from group 1 uses web tracking mechanisms that trigger an HTTP POST

call every time a system login page is loaded from a browser (each system has a listener,

mapped for each producer, named LSTN_G1.1 and LSTN_G1.2). This listener rejects

events based on the origin server IP, checking if it does not come from a valid IP, based
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Figure 4.6: Solution from Model - EPA and Consumers

on a configured whitelist.

Systems from group 2 are able to directly feed our event distribution platform, acting

as as CEP producers, named P_G2.3, P_G2.4.

Those listeners and agents are designed according to EventProducer component, and

interact with a global channel, described in Section 4.1.3.4. For group 1, all events are

considered as regular usage events. For group 2, events whose EventType matches the

ones specified in PublishPattern (related to login, logout, authentication error or usage)

are forwarded to the channel.

Systems from group 3 and group 4 utilize a strategy to introduce into the CEP platform

a batch of accumulated events, thus the usage of OfflineLoader.

For all systems from group 3, a CAS consumer for a single OfflineLoader (OL_G3)

periodically fetches occurrences related to login, logout and authentication error and us-

age events from all systems, and PublishPattern restrict the incoming instances to valid

EventType matches.
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Systems from group 4, on the other way, present evidences persisted in audit trails over

distinct data models and technologies - i.e., a polyglot persistence scenario. OfflineLoader

instances for each system (OL_G4.7, OL_G4.8) guarantee login, logout and authentication

error and usage events are introduced in a standardized format at this point.

To benefit from CEP processing results, an event consumer (CONSUMER_G1234)

interacts with an external application namedMatomoWeb Analytics3, feeding this system

with raw captured events, related to login, logout, denied authentication and usage) and

derived events (summarized utilization information) from all systems, so that Dashboard

reports are produced and exposed for the users, near real-time, with drill-down capacity.

4.1.3.2 Domain Layer

Relevant raw event types coming from producers are: successful_login, successful_logout,

system_usage, and unsuccessful_login.

For systems from group 1, raw events bring an IP address attribute in the Event payload

allows an approximation to the user session concept, due to the fact all user requests are

anonymous - grouping is based on request source IP address, instead of user ids. For this

case, a composed context (C_1) complies: a SegmentedContext, based on origin_ip, a

SegmentedContext, based on system_id, and a FixedTemporalContext comprising daily

occurrences (starting at 00:00 hours every day).

This already provide useful information for reporting, but the utilization panel (Fig-

ure 4.2) and related functionalities requires a higher level of data consolidation. To achieve

it, a composed context (C_1234) gathers all daily occurrences based on system_id.

Events include attributes in the EventPayload such as corporate_user_id, group_id,

and system_id. Such attributes are used, for instance, in a Composed Context (C_234)

that complies: a SegmentedContext, based on corporate_user_id, a SegmentedContext,

based on system_id, and a FixedTemporalContext comprising daily occurrences (starting

at 00:00 hours every day) of events with session_user type. This composition repeatedly

yields the sum of utilization occurrences (aggregated by event type, system_id, and cor-

porate_user_id) as events in the following way:
3https://matomo.org
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Event header: occurrence_time: 00:10:56

Event type: successful_login

Event Payload: group_id=3, system_id=G3.5, corporate_user_id=USR006

Event Payload derived attributes: totalOcurrences=76

Also, five event types were defined to denote consolidations performed by the system

for derived events: session_user, session_ipaddr, summary_daily_system_session_user,

summary_daily_system_session_ipaddr, and summary_daily_system_session.

4.1.3.3 Application Layer

Initially, 2 activities were required to derive events that represent a user session for

further data consolidation (see the activity diagram from Section 4.1.1.2):

• A StatelessFilterEPA (FILTER_G1) captures events created by LSTN_G1.1 and

LSTN_G1.2, filtering occurrences based on the group_id value (matches if it is

equal to 1). It also verifies under rejectFilter Predicate, and if the same IP sends

an event within the last 5 minutes it is rejected (a "session" criteria for idempotent

events). Derived events carry the type session_ipaddr;

• Another StatelessFilterEPA (FILTER_G234) captures events according to a Sub-

scriptionPattern that implements its filterByHeader BiPredicate to pull events that

present group_id equals to 2, 3 and 4, and implement its filterByTypes BiPredicate

to accept only successful_login types, deriving events with session_user type.

Further, an EnrichEPA (ENRICH_G4) captures session_user events, filtering occur-

rences based on the group_id (matching if value equals 4), and complements events with

the standard corporate user id (corporate_user_id attribute), with the assistance of a Glob-

alState, defined in Section 4.1.3.4 as GS_G4.CORP_ID, that maps this value based on the

authenticated credential from origin system. Events for which existing credentials are in-

valid (if they do not match standard corporate user ids) are discarded (i.e., removed from

global channel).

Composite EPAs can now process specific session-related event occurrences, in stan-

dardized formats. Two ContextPartitioner components, described below, dispatch com-
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posite EPAs for aggregating session-related events - each one including at least one seg-

regated inner channel and an aggregate EPA that sums up events grouped according to

composed contexts C_1 and C_234, defined in Section 4.1.3.2:

• CTX_PARTITIONER_G1, related to group 1: subscribes to session_ipaddr events

and creates ContextEPAComposite nodes (COMPOS_G1) according to C_1 (based

on daily occurrence groupings of origin_ip and system_id), deriving, via an aggre-

gate EPA (AGGR_G1), events of type summary_daily_system_session_ipaddr.

• The CTX_PARTITIONER_G234 captures session_user events and creates creates

ContextEPAComposite nodes (COMPOS_G234) according to C_234 (based on daily

occurrence groupings of corporate_user_id and system_id), deriving, via an aggre-

gate EPA (AGGR_G234), events of type summary_daily_system_session_user.

An indication of the context instance in Figure 4.6, alongwith its attributes, is provided

to show how dynamic compositions relate to it in a hypothetical scenario (including a case

where an EPA is decomissioned, which happens once a context instance is no longer valid).

It is also shown how inner channels relate to context instances.

Further, utilization indicators are summarized, via CTX_PARTITIONER_G1234, for

all systems - it creates COMPOS_G1234EPA instances from a composedContext (C_1234,

from Section 4.1.3.2) based on system_id and daily occurrence. COMPOS_G1234 picks

up summary_daily_system_session_user and summary_daily_system_session_ipaddr event

types, and derives, via an aggregate EPA (AGGR_G1234), summary_daily_system_session

events.

In order provide our Dashboard (Figure 4.2) the capacity to dynamically group sys-

tems according to their measured utilization (Section 3.6.1.4), an unsupervised learning

strategy, based on our utilization metrics created by COMPOS_G1234 was implemented.

CLUSTER_G1234 separates those collected metrics values into four groups that reflect

the intensity of their utilization (from no usage to higher indicators). The chosen clus-

tering implementation, based on Spark K-Means4 is always triggered at an arrival of an

summary_daily_system_session_ipaddr event. The resulting centroids are persisted in a
4https://spark.apache.org/docs/latest/mllib-clustering.htmlstreaming-k-means
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Global State attribute that is shared among successive processes, so that values from pre-

vious execution are used as the initial assignments for the cluster centroids, at step 1 of the

algorithm (except for the first time it ran, where random values were assigned). This way,

the prediction model is not rebuilt from scratch every time COMPOS_G1234 outputs an

event - instead, it is incrementally updated, leveraging previous effort. Besides colouring

system panels, cluster indications are provided in upper right section of the Dashboard

(Figure 4.7), showing the three midpoints between the four chosen centroids.

Figure 4.7: Dashboard Color Clusters

4.1.3.4 Infrastructure Layer

At this point, we have already acknowledged relevant information for component as-

pects to represent business goals, considering the integration among CEP actors via a

channel that interacts with a streaming platform, but so far no assumption was made on

technologies for this platform. This is a positive aspect of our model - it lets develop-

ers discover more about business requirements based on attributes and responsibilities

from components in higher layer prior to defining technical components (and then be con-

strained to its functionalities).

Considering the architecture layout and expected volumes for our systems we opted to

use RabbitMQ5 message distribution platform. The choice was made taking into account

also lower costs in terms of server resource processing as we compare it to Kafka6 (e.g.,

no need for Zookeper7 resources for coordination among different nodes), yet bringing

low latency and high throughput on message consumption (DOBBELAERE; ESMAILI,

2017). It also handles automatically the triggering of new queues (for inner channel ele-

ments).

It is important to notice that different streaming flow volumes and distribution de-
5https://www.rabbitmq.com
6https://kafka.apache.org
7https://zookeeper.apache.org
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mands, on other business scenarios, may suggest different platforms.

Note the global channel is represented twice in Figure 4.6 to minimize crossing arrows.

Another relevant infrastructure element indicated in Sections 4.1.3.1 and 4.1.3.2 is the

global state.

AGS_G3GlobalState providesOL_G3 connectivity to CAS data source to fetch Login

and Authentication_Error events from G3.

GlobalState instances are also created to pull data from each system in G4 (GS_G4.7,

related to OL_G4.7; and GS_G4.8, related to OL_G4.8). For one specific case, data is

retrieved via continuous query persistent connections, via Apache Ignite8, so that updates

are perceived closer to transaction occurrences. Another GlobalState (GS_G4.CORP_ID)

shared by all G4 offline loaders, supplies user id mapping, from any source system to

corporate_user_id;

And GS_CL1234 is used by CLUSTER_G1234 to store the latest inferred set of cen-

troids.

4.1.4 Implementation strategy

We analyzed main principles from Event Data Pump design strategy (VILLAÇA;

AZEVEDO; BAIÃO, 2018) for our implementation, heavily used in microservice archi-

tectures for close-to-real-time integration among distributed and loosely coupled services,

and we notice we can benefit from their alignment with our design requirements. In this

strategy, data is sent to orchestrated components that are designed to act as events raise

(closer to real-time occurrences), through queuing mechanisms, providing consumer up-

front access to updated information, yielding better performance metrics (as opposed to

waiting for scheduled jobs to pick up data updates).

Beyond publisher-subscriber mechanisms for queuing and distributing events to par-

ties, this design favors the ability to handle specific processing needs via dynamic provi-

sion of resources (for instance scaling up CPU and memory for processing historical data

batches, which can be freed upon later) and promote characteristics such as packaging
8https://apacheignite.readme.io/docs/continuous-queries
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methodologies for deploying autonomous services. Thus, design decisions like orches-

trating containerizing EPA compositions and dynamic aggregations, according to context

partitioning, were greatly inspired from this architecture strategy.

4.1.5 Multi-threading considerations

The main driver of reactive streams solutions is to govern stream data consumption

across asynchronous boundaries between decoupled components – for instance, delegating

processing on some of the stream elements to separate threads, while ensuring that the

receiving side is not forced to handle a higher amount of data that it can handle (DAVIS,

2018).

This relates to providing mechanisms that allow the queues, which mediate between

threads, to be consumed without impacting not only original producers, EPAs and end

consumers, but also the infrastructure components that provides storage and processing

mechanisms for the queues.

Ensuring certain computations happen on the proper thread (many times outside the

main thread, to alleviate processing demands) is a common development challenge when

dealing with reactive flows (DAVIS, 2018).

This study proposes a model where the streaming platform and each related agent can

be implemented on a segregate process, with an inner logic that can handle the reception

of stream events through a single main thread, which may delegate its tasks to multiple

threads (if sequential processing considerations do not apply), maximizing performance

on individual components. But multiple streaming operations can be established in a pro-

cessing pipeline while iterating through a possibly infinite number consumed events. To

effectively handle the proliferation of threads dispatched by the original thread, strategies

such as cached thread pool (DAVIS, 2018) can be applied for reuse and mitigation of the

overhead when managing processing.

Thus, by having one separate process per agent (Producer, Consumer or EPA) - which

can be viewed, depending on implementation aspects, as container instances, distributed

over different hosts - combined with autonomy to dispatch andmanage threads that benefit

from stream processing features, we are capable to implement solutions that allows better
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composition and handles the need for scalability.

4.1.6 Results

Evaluation followed the guidelines established in Section 4.1.2.

Solution components were built to handle processing scenarios from regular loads

(1000 events/day) to heavy loads (up to 500.000 events per system being introduced at

once). The latter happens since every application that starts being monitored carries au-

thentication data from Jan 2012 on, for historical analysis - and this batch load runs over

night shifts. Demands for integration with systems that present constraints such as re-

stricted schedules are satisfied with OfflineLoader implementation.

Quantitative metrics were collected on all Channel and EPA components in isolation.

Reasons for that was validation of completeness and accuracy of the results, which de-

pends on their interactions during tests.

Two major transitions of non-monitored systems to the solution happened while mon-

itoring - one with 15 systems, another with 24 systems, indicating high loads of utilization

events twice.

An offline, post-evaluation strategy was chosen. A separate message queue (MQ) was

used as a sink component, keeping all event distribution information. This was further

used to establish performance measurements and validate correctness on real data. For

that, channel implementations were refactored so that all published and subscribed events,

from all channels, were copied to newMQ topics, created for this validation (T_CH_PUB,

T_CH_SUB). Also, code was injected in EPA implementations to trigger submission of

messages to another MQ topic created for this validation (T_EPA_measurements), where

every published message contains: processing start and end date time; and serialized rep-

resentations of the output event.

After seven consecutive days collecting data, we evaluated each entry from T_EPA

to: verify EPA processing time, under regular and heavy load processing scenarios; assert

EPA expected outcomes were equivalent to the ones we obtained; confirm that all events

that needed to be processed (from T_CH_PUB) were properly assigned (T_CH_SUB) to
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EPAs.

Latency measurement modes, presented on Figure 4.8, were defined according to

a benchmark study for load generation and performance measurement of CEP systems

(MENDES; BIZARRO;MARQUES, 2008), establishing the following indicators, related

to processing time:

GLOBAL
CHANNEL

EMITTER

EPA

FETCHER

?1 ?2 ?3 ?4
Time

Figure 4.8: Latency measurements - adapted from Mendes, Bizarro e Marques (2013)

• ∆1 - Event Generation Delay - from the moment events are produced, including the

Event instantiation (Event Factory casting Event instance with composed parts),

until the channel publish method is called;

• ∆2 - Channel Conversion Delay - from the moment Channel publish is called, in-

cluding binary transformation of event instances, until a call to the messaging plat-

form is performed with converted event instance. Apache Avro9 was used for the

implementation of binary transformation;

• ∆3 - CEP EPA Processing Time - from the moment event message is subscribed by

the EPA and processed, until either an event is derived by this component (usual

StatelessEPA scenarios) or an event is processed and placed on a buffer (usual pro-

cessing cycle on StatefulEPA scenarios).

• ∆4 - Fetcher Conversion Delay. Conversion from events from the Messaging Plat-

form to Matomo API. Matomo is feed with specific derived events from Glob-

alChannel, and dispatches every 10 minutes a re-indexing process which is out of

this scope.

For the sole capacity of RabbitMQ to absorb incoming events, store and distribute

them, themaximumobserved throughput, in terms of the amount of events passing through
9https://avro.apache.org



CHAPTER 4. EVALUATION 68

a channel per second, was close to 3000 events per second for publishing operations and

2000 events per second for subscribing operations.

Results from these measurements were indicated in Table 4.8.

Table 4.8: Processing Time Measurements
Latency (milliseconds)

∆1 - Event Generation Delay

Average Time Group 1, 2, 3 & 4 Producers 0.1 - 1

∆2 - Channel Conversion Delay

Average Time Global / Segregated Channels 0.1

∆3 - EPA Processing Time

Average Time StatelessEPA 10 - 20

Average Time StatefulEPA 10 - 30

Average Time ClusteringEPAi 3000

∆4 - Fetcher Conversion Delay

Average Time Matomo Consumer 0.1 - 0.5

iClustering: initialization step takes around three seconds, in addition to 0.2 seconds per iteration.

Achieved metrics greatly benefit from technical capacities by the chosen event distri-

bution platform: RabbitMQ 3.7.5 (under Erlang 20.3.5), using AMQP10 as the protocol

from publishing messages. We also leveraged a Spark API for the consumption of event

streaming from this platform (via Spark Stream, for RabbitMQ11). Spark was relevant for

this implementation, since it increases the execution speed of streaming processes, speed-

ing up the input/output, by storing the data in memory via RDD (Resilient Distributed

Dataset) - its basic abstraction, that represents a partitioned collection of stream elements

that can be operated in parallel.

Also, other requirements weremet by this solution: advanced filtering via topic routing

key patterns (RabbitMQ out-of-the-box feature - as we added group id and system id to

the topic name we can further use expressions to filter them); continuous model training

(ClusteringEPA) and reusability for both EventEmitter (via AMQPAPI) and EventFetcher
10Advanced Message Queuing Protocol (AMQP) is an open standard (ISO/IEC 19464) for passing busi-

ness messages between applications and organizations
11An API that uses of Spark streaming strategy for consuming RabbitMQ messages - https:

//github.com/Stratio/spark-rabbitmq
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(via Spark Stream).

Results indicate that, on higher load occasions, throughput scaled up to around 50

raw events being processed per second. This was measured by quantifying the number

of incoming events from FILTER_G1 and FILTER_G234, at the beginning of Phase I

processing, as described in Session 4.1.1.2, according to implementation documented on

Session 4.1.3. The amount of events coming as the output from those filter EPAs was

observed to between 3 and 20 times smaller than the input volumes, relieving the burden

of the next processing stages.

We can observe, from Table 4.8, that the majority of the time is spent actually process-

ing operations, which is reasonable, since we are leveraging technologies that saves time

for formatting and distributing messages across CEP components.

We observed no compromise to integrity (all events were processed), nor any impact

that caused unavailability of any node, resulting on an overall average processing time

of 20 ms, although total round time since event introducing up to their aggregations are

delivered to Matomo is highly impacted during batch loads. The first batch with around

40.000 historical events, related to 15 systems, was completed in less then 15 minutes, and

the second one, with near 500.000 events for 19 systems, lasted less than three hours. For

those cases (offline loading), ∆1 time can be ignored, since it starts with a batch of pro-

duced event instances. Under normal circumstances (where no historical data is processed

in parallel) utilization occurrences are processed under one second.

Containers (observed via docker statistics12) indicated the need for improvements, es-

pecially related to CPU consumption - EPAs are created with a setting to limit its process-

ing to 2 CPU cores, and on a few occasions it consumed all available capacity (especially

while starting up each new container instance). Memory consumption was perceived to

be between 100MiB and 800MiB (840MB) and those evaluated indicators suggest CPU-

bound operations were kept below the threshold.

In terms of correctness and integrity, all events were correctly assigned and processed

by EPA nodes. Since there was no improper discarding of events (false negative), nor im-

proper processing of events (false positive), both accuracy and precision metrics yielded
12https://docs.docker.com/engine/reference/commandline/stats/
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1 (100%) as the result from analysis. Around 550.000 raw events (historical events and

10.000 contemporaneous events) and 350.000 derived events were considered in this anal-

ysis, which was simplified with the usage of correlation ids and attributes.

Accuracy for clustering processing was not evaluated here since the implementation

delegates the calculation to Spark K-Means13 solution, sending the last inferred set of

centroids (as initial model) and the data set containing aggregated utilization values. As

for performance, a Context was defined for CLUSTER_G1234 so that this process is only

triggered every half an hour, with evaluation mode set as DEFERRED (to be processed

at the end of the context window) due to the delay for Spark RDD set instantiation for

system utilization values (the initialization step takes around three seconds, in addition to

0.2 seconds per iteration).

This test was provided in 3 servers configured with Intel Xeon processor (4 cores) and

30 GB RAM, running Docker containers14 under CentOS Linux, managed via a Docker

Swarm15 orchestrator. Swarm features relevant aspects, such as scalability (guaranteed

number of replicas), security (authenticated and encrypted communication between con-

tainers) an load balancing (distributing containers between hosts).

Instantiating Composite EPAs (as new Context partition emerges) or shutting them

down (as a window terminate condition is reached) was performed in this solution by,

respectively, gracefully starting (via a routine that injects context attributes into the VM)

or stopping a service container according to a flag indication read by the container orches-

trator.

RabbitMQ ran as a single container (with multiple queues) in one of them. A few

optimizations on RabbitMQ settings, such as transient messages, thread pool, and no ac-

knowledgements settings were performed, on top of network and OS tunings (for instance

ARP caching thresholds). Further optimizations within containers such as data source

caching for Global State instances were performed.
13https://spark.apache.org/docs/latest/mllib-clustering.htmlk-means
14A container is a standard unit of software that packages up code and all its dependencies so the ap-

plication runs reliably from one computing environment to another. It also leverages the machine’s OS
system kernel and therefore do not require an OS per application, driving higher server efficiencies. Source:
https://www.docker.com

15https://docs.docker.com/engine/swarm/
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Purging from RabbitMQ erases queue members that have been published more than

10 days ago, but it was disabled during this test. All historical data is migrated and fetch

from Matomo database, for historical purposes.

We compare our throughput result, 50 raw events per second, with achievements from

academic papers - which use raw events per unit of time for throughput measurements.

Examples of throughput indicators in other real-time streaming studies are: 6.000 tweets

processed per hour (YADRANJIAGHDAM; YASROBI; TABRIZI, 2017), which is al-

most 2 events per second; 2500 rows of data for one complex prediction for the state of

the wind turbines every 10 minutes (CANIZO et al., 2017), which is around 4 events per

second; 500 sensor events per second (MAYER; MAYER; ABDO, 2017); 500 social net-

work events per second (MANJUNATHA; MOHANASUNDARAM, 2018); and 10.000

image events per second (ICHINOSE et al., 2017).

We observe our result falls in the middle of a wide range of throughput indicators,

which shows a potential of our model to design solutions that perform reasonably well -

although performance was not the main goal of this research.

Finally, we assessed coupling and cohesion aspects for implemented components. De-

signs with low coupling and high cohesion, according to software engineering experts,

lead to products that are more reliable and maintainable (FENTON; BIEMAN, 2014).

This evaluation shows how the model-driven instances from this scenario, depicted in

UML object diagrams from Figures 4.9 and 4.10, aim to minimize coupling. To simplify

the representation, only the main CEP agents were represented - but on further evaluation

we considered all model dependencies.

<<ddd_Service>>
Global : Channel

<<ddd_Service>>
LSTN_G1.1 :

EventProducer

<<ddd_Service>>
LSTN_G1.2 :

EventProducer

<<ddd_Service>>
P_G2.3 :

EventProducer

<<ddd_Service>>
P_G2.4 :

EventProducer

<<ddd_Service>>
OL_G3 :

Offl ineEventLoader

GS_G3_CAS :
EventGlobalState

GS_G4.7 :
EventGlobalState

GS_G4.7 :
EventGlobalState

<<ddd_Service>>
OL_G4.7 :

Offl ineEventLoader

<<ddd_Service>>
OL_G4.8 :

Offl ineEventLoader

<<ddd_Service>>
CONSUMER_G1234 : EventConsumer
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Figure 4.9: Producers and Consumer
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<<ddd_Service>>
Global : Channel

ENRICH_G4
: EnrichEPA

FILTER_G1 :
StatefulFilterEPA

FILTER_G234 :
StatefulFilterEPA
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CTX_PARTITIONER_G1

: ContextPartit ioner

<<ddd_Service>>
CTX_PARTITIONER_G234
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CTX_PARTITIONER_G1234
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<<ddd_Aggregate>>
COMPOS_G1.8 :
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<<ddd_Aggregate>>
COMPOS_G234.2 :

ContextEPAComposite

<<ddd_Aggregate>>
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ContextEPAComposite
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<<ddd_Service>>
ContextVI :
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new new

<<ddd_Service>>
ContextIV :

Channel

<<ddd_Service>>
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<<ddd_Service>>
ContextII : Channel

AGGR_G1234_II
: AggregateEPA
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AggregateEPAnew
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new

AGGR_G234_VI
: AggregateEPA

AGGR_G1_VI :
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new
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Figure 4.10: EPA Processing

Coupling is defined (FENTON; BIEMAN, 2014) as an attribute of pairs of objects.

As a metric, it is proportional to the total number of couples that one object has with other

objects (assuming that all basic couples are of equal strength).

The first aspect we highlight from the diagrams is how CEP Agents (Producer, EPA

and Consumer instances) interact with each other. There is no direct inter-dependencies

between them - all communications are established via the channel. Agents present no

knowledge of the methods and attributes of other agents. Direct access between agents

is avoided, therefore coupling for interactions among agents is minimized, and restricted

to the interactions with the channel. Related coupling measurements that corroborate this

aspect are described below.

CBO -CouplingBetweenObjects (CHIDAMBER;KEMERER, 1991; OTIENO;OKEYO;

KIMANI, 2015): The number of times methods of one class use the methods or attributes

of another class. Multiple accesses to the same object are counted as one access. Only
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method calls and variable references are counted. When this value is high, it indicates a

high degree of class inter-dependency.

NDO - Number of Dependencies Out (OTIENO; OKEYO; KIMANI, 2015): defined

as the number of classes that depend on a given class. When this value is high, it indicates

reuse for the class.

RECBO - Run-time Export Coupling Between Objects (MITCHELL; POWER, 2004)

: It defines the number of class instances accessing the methods of a class at runtime.

Table 4.9 present CBO and NDOmeasurements based on referenced classes indicated

in our CEP model, according to Section 3.3 descriptions. According to Shatnawi (2010),

their values (less or equal to 9) indicate low coupling. RECBO was observed according

to objects from Figures 4.9 and 4.10. The rational used for its elaboration is demonstrated

in Appendix C.

This analysis requires us to analyze a different kind of coupling, since every CEP agent

is bound to the event distribution platform through the channel (see observed number of

active agents in NDO metric from Table 4.9).

To deal with Channel overhead, technical optimizations were put in place, and iso-

lated measurements on event publishing and subscribing operations show there was no

compromise w.r.t interacting with stream platform.

We foresee that the contract established via public methods and attributes is likely to

remain the same, despite technical choices of message distribution platforms or stream

processing technologies (Spark, Kafka, etc.). Rather than that, specific implementations

to interact with other technologies, via their API, is subject to change without affecting its

contract - which is less harmful to coupling. Therefore, this indicates stability of depen-

dencies - a situation where application concepts are well defined and the implementations

of those concepts are stable(HITZ; MONTAZERI, 1995).

On the other side, CEP agents logic, which varies according to business domain scenar-

ios (a category considered with higher degrees of coupling, according to Hitz e Montazeri

(1995)), are only bound to each other via the channel, showing a lower risk of impact as

they go through modifications. We can also observe that dynamic EPAs provisioned under
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Table 4.9: Coupling-Related Measurements
Class Object(s) CBO NDO RECBO

EventProducer LSTN_G1.1, LSTN_G1.2, P_G2.3,
P_G2.4

5 0 i 0 i

OfflineEventLoader OL_G4.7, OL_G4.8, OL_G3 7 0 i 0˜i

EventGlobalState GS_G3_CAS, GS_G4.7, GS_G4.8 3 2 ii 1 ii

EventConsumer CONSUMER_G1234 5 0 i 0 i

ReferenceDataGlobalState GS_G4.CORP_ID, GS_CL1234 5 2 ii 1 ii

EnrichEPA ENRICH_G4 9 1 iii 0 iv

StatefulFilterEPA FILTER_G1, FILTER_G234 7 1 iii 0 iv

ClusteringEPA CLUSTER_G1234 8 1 iii 0 iv

ContextEPAComposite COMPOS_G1.8, COMPOS_G234.6,
COMPOS_G234.2, COMPOS_G1234.7,
COMPOS_G1234.8

9 1 iii 0 iv

AggregateEPA AGGR_G1_VI, AGGR_G234_I,
AGGR_G234_VI, AGGR_G1234_II,
AGGR_G1234_III

8 1 iii 0 iv

Channel Global, ContextII, ContextIII, ContextIV,
ContextVI

5 ∝ cv ∝ avi

i No other class from the model indicates dependency for this class.

ii Either GlobalStateProvider factory (initially, at creation) or a CEP agent (after creation) references this instance at
run-time (both are valid when counting classes.)

iii References this class, at creation time: EPAComposite, ContextEPAComposite, or ContextPartitioner.

iv After creation, EPAs are not referenced by other model components.

v Class static references to this class: this scales according to the number of chosen EPA Specializations (e): our model
(Section 3.3) shows currently 20 classes bound to Channel (where 12 of them are EPA specializations).

vi The amount of dynamic references to this class is proportional to the number of agents (a): as depicted in Figures 4.9 and
4.10, it scales to 21 active agents, plus one ChannelBroker. In reality, we reached an approximate number of 100 active
agents

composed contexts (aggregate compositions, show in grey, in Figure 4.6) follow a similar

design used for non-composed EPAs - they both pull occurrences (the latter from an inner

channel, instead of global channel), process and output results to their linked channel -

i.e., fully independent of other agents.

We also evaluated the degree of cohesion for the Channel class, in order to understand

if CEP agents could benefit from further segregation of its responsibilities. We used the

Lack of Cohesion in Methods (LCOM) metric as defined by Hitz e Montazeri (1995).

It consists of the number of pairs of methods operating on disjoint sets of instance vari-

ables, and is therefore an inverse measure for cohesion (the higher are values, higher is

the indication a refactoring is needed for a class). Here we reproduce the definition:
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Let X denote a class, IX the set of its instance variables of X, and MX the set

of its methods.

Consider a simple, undirected graph GX(V, E) with V = MX, and

E = ⟨m,n⟩ ∈ V×V| (∃i ∈ IX : (m accesses i)∧ (n accesses i))

∨ ( m calls n)∨ (n calls m)

LCOM(X) is then defined as the number of connected edges of GX

We calculated the metric by creating a list of Channel methods and attributes, and

then analyzed their references to each other. Functional Interfaces are treated as methods,

whose implementation is provided via lambda expressions.

Figure 4.11 shows the evaluation of LCOM for the Channel class. This picture demon-

strates the methods publish and consume are calling the encodeEvent and decodeEvent,

and since they share an instance of streamPlatformConnectivitySettings (to establish con-

nectivity to the stream platform), we can see no disjoint set of edges arising from the graph

- therefore LCOM = 1, an indication of high cohesion.

We also observe that the StreamConsumer function implementation encompasses EPA

specific variations, triggering processing stream pipelines according to each EPA respon-

sibility. This function is evaluated under the occurrence of subscribed events, and as a

result it may trigger publishing of derived events, therefore constituting a cohesive flow.

Other CEP agents also present a high cohesion degree - EventConsumer, acting upon oc-

currences fetch from subscribeEvents (from EventFecther), and EventProducer, for which

event introduction is performed for via publish (from EventEmitter).

4.2 Feedback from Industry Experts

In order to evaluate a theoretical conjecture - "a model that represents EPA compo-

sitions, incorporating aspects such as stream processing, segregation based on context,

historical data processing and incremental training, fulfills requirements for building Re-
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Figure 4.11: LCOM for Channel

altime StreamingAnalytics solutions", we elaborated aworkshopwith experienced system

architects.

Evaluators were selected based to their academic and work experience - the require-

ment was pursuing a graduation degree related to Computer Science and experience in

modelling and implementing solutions that handle analysis of high volume of data trans-

actions close to their occurrence, with at least one solution in production.

The skills required for this study restricted the possibilities to find adequate partici-

pants for the evaluation, and we were able to gather five participants in our workshop. All

chosen professionals work for large size companies, and they are experienced profession-

als (more then 10 years of experience building systems, at least 5 in the field of system

architect). We also tried to compensate the low number of selected participants by choos-

ing them over different companies and industry sectors - two of them work in Finance

area, one in Telecommunication and two in Oil & Gas.

4.2.1 Workshop and Evaluation Criteria

The workshop was divided in three parts, described as follows.

On the first part, we introduced the CEP components (from Section 2.1), the DDD
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layers (Section 2.2.2) and the logic behind the compartmentalization of CEP components

according to those layers, presenting our overall diagram (Section 3.2). Then we went

through the details for each model partition, from Section B.1 to Section 3.8. We also

provided a brief presentation on the applicability of our model on a real industry use case

(Section 4.1).

On the second part, we explained the requirements for evaluating our Model - the 13

realtime streaming analytics patterns (Section 2.2.4), along with examples provided in

Perera e Suhothayan (2015). At the end of the session, we asked the participants to fill a

questionnaire with two sets of questions.

For the first set of questions (presented in Table 4.10, we inquired participants if they

understood: the model explanation; the requisites being evaluated (i.e., the analytics pat-

terns); the rules for evaluation; and whether they considered the evaluation reasonable.

They were asked to respond with a YES or NO answer.

Table 4.10: First Set of Questions
Q_ACK_1 Was the model explanation clear?

Q_ACK_2 Are the requisites being evaluated clear?

Q_ACK_3 Are the evaluation rules clear?

Q_ACK_4 Do you consider this evaluation reasonable?

For the second set, the questions were elaborated by following GQM strategy (SOLIN-

GEN et al., 2002), based on goals, questions and metrics. For that, we developed a plan

beginning by clarifying the specific target, the objects being measured, and the context

in which the measures are analyzed (presenting the goal, in Table 4.11). We aimed to

evaluate if our proposed model was capable to meet a set of thirteen requirements of real

time streaming analytics (PERERA; SUHOTHAYAN, 2015). A questionnaire was then

presented with thirteen questions (Table 4.12). Those questions were then correlated to

evaluation metrics (Table 4.13).

The participants were asked to evaluate the adequacy of the model for each one of the

thirteen patterns, on the second set of questions, by:

• marking, for each pattern, their perception of adequacy on a scale that ranged from
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Table 4.11: Main Goal Definition
Main Target Validate the applicability of themodel in a relevant CEP sce-

nario

Purpose Outcome from experts on the applicability of model for real-
world industry streaming analytics solutions, a major appli-
cation area in CEP

Quality Measurement Evaluate the model based on feedback from application ar-
chitects in regards to the model and ways to design it accord-
ing to each one of the thirteen streaming analytics solution
patterns (PERERA; SUHOTHAYAN, 2015)

irrelevant (0) to relevant (3), with no neutral position on this scale, being:

- 0 does not meet the acceptance criteria;

- 1 partially meets the acceptance criteria with severe restrictions;

- 2 meets the acceptance criteria with minor restrictions;

- 3 fully meets the acceptance criteria;

• providing a textual description to justify the answer above, for instance by exem-

plifying a possible application of the model that meets the requirement.

After collecting the answers, we proceeded to the third part of the workshop. At this

stage, we debated the justifications for the answers, aiming to reach a consensus with

regards to the capacity of our proposal to meet demands of each streaming analytic pattern.

4.2.2 Results

The five participants (P1 to P5) indicated positive feedbacks for all questions on the

first set of questions, being Mset1_exp, Mset1_req, M1set1_rul and Mset1_rea all equal to 5.

On the second set, we observed the following to be true:

∀i, j, where 1 ≥ i ≥ 13 and 0 ≥ j ≥ 3,Mset2_ij ≥ 2

This is because we had no participants who assigned a grade less then 2 (see Ta-

ble 4.13). The majority of the answers for this set received a grade 3, and examples were

provided on each answer, in terms of the application of the model according to scenarios

that correlate to the goal assigned for each one of the analytics pattern.
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Table 4.12: Second Set of Questions
Q_PATTERN_1 Does the model support projections from one data stream into

other data streams?

Q_PATTERN_2 Does the model support alerts generation based on simple and
complex conditions, such as rate of increase?

Q_PATTERN_3 Does the model support simple counting and counting within
event windows via aggregate functions?

Q_PATTERN_4 Does the model support joining multiple data streams into a new
event stream?

Q_PATTERN_5 Does the model support data correlations for detecting missing or
erroneous events in a data stream, and acting on their occurrence?

Q_PATTERN_6 Does the model support processes combining real-time data and
historical data persisted in a data source?

Q_PATTERN_7 Does the model support the detection of temporal patterns for
event sequence?

Q_PATTERN_8 Does the model support tracking objects over space and time di-
mensions, detecting given conditions?

Q_PATTERN_9 Does the model support the detection of patterns and trends from
time series data and bringing information such as outliers into op-
erator attention?

Q_PATTERN_10 Does the model support running processes both in batch mode as
well as in realtime pipelines?

Q_PATTERN_11 Does the model support detecting a high number of abnormal oc-
currences, and further analyze it using historical data?

Q_PATTERN_12 Does the model support usage of a prediction model which, once
properly trained, can be used within the realtime pipeline to infer
information

Q_PATTERN_13 Does themodel support usage of automatized control for problems
such as situation awareness?
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Table 4.13: Metrics for Questions
First Set

Mset1_exp Number of people who acknowledged understanding from model ex-
planation

Mset1_req Number of people who acknowledged understanding from requisites
from patterns being evaluated

Mset1_rul Number of people who acknowledged understanding rules for the
questionnaire evaluation

Mset1_rea Number of people who considered the questionnaire evaluation rea-
sonable

Second Set

Mset2_i0 For Qi, number of people who chose 0 in the quality scale for the
related perception answer

Mset2_i1 For Qi, number of people who chose 1 in the quality scale for the
related perception answer

Mset2_i2 For Qi, number of people who chose 2 in the quality scale for the
related perception answer

Mset2_i3 For Qi, number of people who chose 3 in the quality scale for the
related perception answer
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Only 4 cases out of the 65 answers were evaluated with a grade 2 (meaning it still

meets the acceptance criteria, with minor restrictions), as per Figure 4.12.

The justified answers were further discussed among all participants, and invalid con-

siderations were not perceived. They relate to the following observations:

• Pattern 4 : Join - On top of combining multiple data streams and create a new event

stream as a result, the need to perform joins across event streams based on correla-

tions involving different data formats (audio, video) and attributes (as geolocation)

- it was not directly approached, and it may require further extensions. For this

matter, we have prototyped an EPA that consumes a picture and dispatches an auto-

matic license plate recognition algorithm to infer an event consisting of set of plate

numbers, along with their probability.

• Pattern 9 : Detecting Trends - This is possible via PatternDetectEPA, and an exten-

sion is provided to demonstrate the possibility of automatic learning for the predic-

tion of clusters. However further extensions are required as we aim to incorporate

functionalities not evaluated in this study, such as supervised machine learning.

• Pattern 13 : Online Control - We may need a practical evaluation for use cases that

involve complex online control scenarios (e.g. self-driving car) involving problems

as deciding on corrective actions, which may require more functionalities than what

it has been designed to do.

Figure 4.12: Chart - Answers from Second Set of Questions

We can infer potential benefits from the proposed model by observing the convergence

in the answers from the five participants. Results indicate the model fully complies to 10

out of 13 patterns, and meets acceptance criteria to remaining ones - whereas, for EPTS

Reference Architectural Models (described in Section 2.2.1), only 9 out of 13 patterns

apply, according to Perera e Suhothayan (2015), Cugola e Margara (2012).
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Patterns covered by this model (missing on EPTS models), relate to the following

features:

• Pattern 6: Interacting with Historical Databases - Combining the realtime data pro-

cessing against the historical data stored in any source is possible by leveraging

features from EPA Compositions that involve elements such as EnrichEPA (Section

3.6.1.1) and AggregateEPA (Section B.8), which provide stream processing opera-

tions with assistance of Global State (Section 3.8);

• Pattern 10: Same Processing Mechanisms in Batch and Realtime Pipelines - The

adoption ofOfflineLoader (Section 3.6.3) according to EPA andEventFetcher stream

subscribing mechanisms (Section 3.5.2) fulfills the need to process historical data,

loaded via batch operations, according the same processing means.

• Pattern 11: Detecting and switching to Detailed Analysis - this pattern is used with

the use cases where we cannot analyze all the data in full detail. Anomalous behav-

ior can be triggered as a new event inferred by PatternDetectEPA (Section 3.6.1.3),

such as an interlock alert coming from an industrial sensor that requires immediate

corrective actions. This event can be consumed within an EPA composition that

segregates those occurrences from the Global Channel, where an inner channel that

relates to high-priority context data dispatches specific alarm occurrences so that

proper actions can be taken.

• Pattern 13: Online Control - This relates to problems that require current situation

awareness, based on predicted values. PatternDetectEPA and extensions such as the

one provided by ClusteringEPA (Section 3.6.1.4) allow the incremental inference

of patterns in real time, assisting on decisions based on models that vary over time.

Also, a benefit introduced in this model can be observed on Pattern 1, where filtering

operations can be enhanced through upfront projection mechanisms for consumer compo-

nents (e.g., via SubscriptionPattern from Sections 3.5.2 and 3.7.1).



5. Conclusion

This chapter presents the conclusion of this study, its contributions, as well as the

limitations of the approach and future work.

5.1 Final considerations

Elucidation of howEPA agents can be composed in a CEP solution assists on designing

CEP architecture platforms based on inter-operable, reusable components. This is relevant

for identifying design strategies that addresses industry CEP requirements and their chal-

lenges, due to their demands in terms of distributed data processing and integration with

increasing levels of complexity.

5.2 Contributions

The main contribution of this work is the proposed architectural model. This model

addressed themain weakness of literature with regard to EPA composition, which is a clear

guidance for organizing those elements according to business needs. It aims to minimize

its complexity by establishing clear responsibility assignments for components, as well as

by highlighting and isolating common functionalities.

Our proposal enhances current CEP representations by:

• Establishing an innovative way to represent EPA compositions via global and seg-

regated inner Channel instances (Section 3.6.1), and to clarify dynamic EPA com-

83
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positions through arrangements of existing aggregation structures, based on context

partitions (Section 3.4.2);

• Representing state of the art event processing strategies in CEP, such as advanced

filtering (Section B.8), offline introduction of events (Section 3.5.1), incremental

model training (Section B.50) and stream processing (Sections 3.6.1 and 3.7.1);

• Clarifying and reorganizing the hierarchy of EPA types, for instance by providing

reuse of StatefulEPAs on SplitEPA (Section B.8), and by handling event processing

via stream processing pipelines (Section 3.7.1).

An evaluation of the capacity of the proposed model to meet requirements for realtime

analytics patterns indicated benefits from its usage, as we compare it with EPTS architec-

tural models, especially since it addresses solutions for patterns not yet covered by those

models, achieved due to introduced features such as stream grouping based on context,

processing of streams of events and offline processing of event batches.

Also, an analysis of the results provided based on a use case experiment, demonstrat-

ing the metric outcomes from the solution within an industry real use case. The model

guides us to implement cohesive components that integrate through a platform (via mes-

sage streaming) of events, and agents presented a low degree of coupling. Their construc-

tion was also driven by container mechanisms, allowing us to provision and decommission

services based on required circumstances (such as windows triggering conditions based

on context). Other benefits perceived from this solution include: the ability to meet the

demand for integration with systems that present constraints such as restricted schedules

(via offline loads); advanced message filtering (via platform features); continuous model

training (with K-means) and high performance and reusability for emitting and pulling

events via streaming operations provided by specialized components. This analysis can

serve as a guidance to elaborate other solutions, depending on the architecture application

scenarios.



CHAPTER 5. CONCLUSION 85

5.3 Limitations and Threats to validity

Despite our goal to simplify the construction of CEP solutions, themodel itself presents

a degree of complexity, encompassing 6 layers with approximately 60 concepts. This was

a trade-off, in order to be able to express different composition scenarios when designing

CEP solutions. The experiment on Section provides guidelines and suggestions on how

and when to apply the model features.

The case study fromSection 4.1 covers a scenariowherewe explored the elaboration of

an architecture. The fact researchers from this study were involved in the implementation

poses a possible bias. We mitigate it by collecting feedback from industry experts.

We observed the round time (as a result of total performance) was impacted during

two batch loads. It did not compromise our results given the business expectations, but

shows an area for improvement, given the demand for computing resources. The initial-

ization time for running (spawning SpringBoot1-based containers via runc2) presents an

opportunity for improvement (it got close to 2 seconds with JVM optimizations). Despite

of that, the capability to scale up and down the number of containers according to business

demands, which relate to processes and threads sharing our hosts' resources, indicate the

technology choice was appropriate for the effectiveness related to our results.

Regarding the choice of Domain-Driven Design principles - another paradigm, named

Model-Driven Architecture (MDA) (KLEPPE et al., 2003) was also considered as a me-

thodical approach to define reusable assets. However, it was not used for the model elabo-

ration, since this strategy requires more emphasis on transforming a model into code then

clarifying how to correlate the model components based on meaningful contexts. Also,

defining the model components requires the analysts to establish model components based

on their perception of business domain scenarios, so DDD was naturally applied as guid-

ance. MDA, though, is fully applicable on further stages, when we plan to derive software

components from the proposed model.

Although quantitative metrics were observed for only one case study experiment, and

comparison against other relevant studies is subjected to interpretation of the nature of
1https://spring.io/projects/spring-boot
2https://github.com/opencontainers/runc
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processing operations, implementation showed potential gains from our model, especially

if we consider the feedback from industry experts on top of the measurements. We are

also planning to the model on other projects (discussed in the next session) with different

settings: one bringing a greater amount of events (from automation sensors), and another

one bringing events captured from geographically dispersed locations, as images, from

camera sensors.

The feedback from Section 4.2 indicated minor restrictions related to the need for

extending some of the model components. In the same section, we indicated the reasons

why we were constrained to five participants in our evaluation.

5.4 Future work

The proposed model needs to be refined to encompass other relevant scenarios. It is

currently being evaluated in two distinct projects, described below.

One of the projects collects high amounts of data from automation devices and pe-

riodically infers predictive maintenance information (based on factors such as vibration

and pressure measurements). In this case we have 850 sensors and actuators providing

information at least every tenth of a second. Even if we capture, via operational historian3

aggregated measurements (such such as average and median values) per second, it still

results in more then 70 million readings per day - a stronger requirement to process higher

amounts of data.

Another case integrates with storage devices fed by several sensor cameras, and infers

license plate numbers from vehicles entering or leaving a restricted area, further cross-

ing this data with corporate information. Here, sensors are geographically spread across

Brazil, and we are sending the images to a central queue - wemight benefit if our computer

vision processing could be performed closer to the sensor location, extract the list of plate

numbers (with highest probabilities) and send them as text to the central queue, reducing

network latency and optimizing overall response time. The distribution of processing over

a large geographic extent, on top of architectural aspects discussed in CEP, brings an inter-
3A time-series data store that integrates with control systems and captures readings from all sensors -

e.g. https://www.ge.com/digital/applications/historian
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esting perspective, that has been a field of study in System of systems engineering (SoSE)

and was not yet addressed in this study, but may bring valuable contributions - SoSE deals

with networks of heterogeneous systems that exhibit geographical distribution, operational

and managerial independence, and emergent and evolutionary behaviors that would not

be apparent if the systems and their interactions were modeled separately (MAIER, 1998).

Also, we plan to elaborate a process to guide architects and developers on implemen-

tations of the model, which can be applied over new scenarios.
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A. Literature Review

This chapter presents the protocol for this review - a systematic revision, based on a

series of standards and templates available (MIAN et al., 2005). Its purpose is to iden-

tify academic researchers' considerations related to the design of EPA compositions in

Complex Event Processing topics, and correlated discussions on Streaming solutions.

A.1 Planning

A.1.1 Question Focus:

Identify articles that discuss model components related to complex event processing

(CEP), allied to Streaming technologies, in order to subsidize the construction of a model

that represents the characteristics of the data involved in this process in amanner consistent

with the state of the art.

A.1.2 Question Quality and Amplitude:

A.1.2.1 Problem:

Software architectures dealing with complex event processing have a high degree of

complexity, especially because of the nature of the operations involved (polyglot data

integrations with characteristics of high variability, high frequency of occurrence, large

volumes of information), and there is no universal solution that can efficiently resolve all

scenarios. Publications suggest a generic CEP processing model, to guide architects in the

elaboration of solutions of this nature(LUCKHAM, 2002; ETZION; NIBLETT; LUCK-

95
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HAM, 2011). The model needs a hierarchy of operations to represent possibilities for

composing EPA processing tasks to provide the main desired CEP operations (ETZION;

NIBLETT; LUCKHAM, 2011). Since the term "Streaming" has been used as a reference

to CEP solutions that leverage streaming technologies for event distribution in scalable

scenarios, it has also been considered (as an inclusive criteria) in this research.

University research projects dedicated to developing principles of CEP started in the

decade of 1990 (ETZION; NIBLETT; LUCKHAM, 2011). But due to high amount of

academic studies related to CEP we opted to restrict the search criteria to more recent

studies. Also, we identified a broad study related to CEP modelling, covering progress

on CEP since the first CEP embryonic attempts in industry (LUCKHAM, 2002) up to

2011, providing guidance for structuring and organizing artifacts that represent CEP com-

ponents (ETZION; NIBLETT; LUCKHAM, 2011). A deeper level of details was pro-

vided from this work to build solutions based on CEP fundamental principles, and it is

referenced by more than 800 academic studies (at the time of this research, according

to Scholar). Based on its published date we defined a date range for our search criteria

(studies published between 2012 and 2018, i.e., following this study).

A.1.2.2 Questions:

What features, attributes, and properties of EPA operations are relevant to determine

a model consistent with the state of the art in CEP processing? To answer this question,

we propose to evaluate the publications available in the academic world according to their

affinity with EPA operations and features. This allows us to infer concepts and taxonomies

applicable to the proposed scenario;

A.1.2.3 Search String, Keywords and Synonyms:

One search string was constructed according to keywords and synonymous from dif-

ferent sections of the papers. In abstract: <(”event processing” OR stream OR streaming)

AND (architecture OR model OR organisation organization OR arrangement OR compo-

sition OR setup OR formation OR design OR distribution)>. Indicated by the author as

keywords: <stream OR event>. Complementary, related to the research focus, from any

content section: <”real*time” AND (filtering OR transformation OR processing OR trend
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OR tendenc* OR "pattern detect*")>, and on publishing date, <between 2012 and 2018>.

A.1.2.4 Outcome Measure:

Number of relevant articles.

A.1.2.5 Population:

Publications related to CEP architecture, dealing with characteristics involved in the

operations of nodes that process events.

A.1.2.6 Application:

Software architects, developers, research community.

A.1.2.7 Experimental Design:

No statistical method will be applied.

A.2 Sources Selection:

Define the sources that will be used as the platformwhere searches for primary analysis

will be executed.

A.2.1 Criteria Definition:

Availability to consult the articles on the web; presence of search engines using key

words and databases suggested by experts.

A.2.2 Studies Languages:

English.
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A.2.3 Sources Identification:

A.2.3.1 Sources Search Methods:

Search through web search engines.

A.2.3.2 Sources List:

ACM1, IEEExplore2, Scopus3, and Scholar4

A.2.3.3 Sources Selection after Evaluation:

All publications that have the potential to collaborate with inference about event pro-

cessing metadata.

A.3 Studies Types Definition:

Studies related to the research topic with the potential to help elucidate metadata re-

lated to event processing in CEP surveys will be selected.

A.4 Procedures for Studies Selection:

After filtering the bases, reading the title, the tags, and abstract section, to discard the

articles that are not related to the theme. After reading and selecting the remnants, the

main aspects observed will serve as a basis for the research.
1https://dl.acm.org/
2https://ieeexplore.ieee.org/
3https://www.scopus.com
4https://scholar.google.com
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A.5 Collected Result Data:

A.5.1 Filtering Query:

A.5.1.1 Query Indicators:

• Database: ACM

– Records: 631 matches

– Query String: recordAbstract:("Event Processing" stream streaming) AND

content.ftsec:("real*time") AND content.ftsec:(filtering transformation pro-

cessing trend tendenc* "pattern detect*") AND recordAbstract:(architecture

model organisation organization arrangement composition setup formation

design distribution) AND keywords.author.keyword:(stream event)

– filter: "publicationYear": "gte":2012, "lte":2018

• Database: IEEE Explore

– Records: 1206 matches

– Query String: ("Abstract":streamOR "Abstract":streamingOR "Abstract":"Event

Proces*") AND ("real-time" OR "real time") AND (filtering OR transforma-

tion OR processing OR trend OR tendenc* OR "pattern detect*") AND ("Ab-

stract":architectureOR "Abstract":model OR "Abstract":organisationOR "Ab-

stract":organization OR "Abstract":arrangement OR "Abstract":composition

OR "Abstract":setupOR "Abstract":formationOR "Abstract":designOR "Ab-

stract":distribution) AND ("Index Terms":stream OR "Index Terms":event)

– filter: 2012 - 2018 (range)

• Database: Scopus

– Records: 1427 matches

– Query String: ABS ( "Event Processing" OR stream* ) AND ALL ( filter-

ing OR transformation OR processing OR trend OR tendenc* OR "pattern

detect*" ) AND ABS ( architecture OR model OR organisation OR organiza-

tion OR arrangement OR composition OR setup OR formation OR design OR

distribution) AND KEY(stream OR event)
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– filter: Limit to Subject Area: Computer Science;

– filter: Limit to Keywords: Stream, Data Stream, Data Streams, Stream Pro-

cessing, Complex Event Processing (options with "stream" or "event");

– filter: Limit to years 2012 up to 2018

• Database: Scholar

– Records: 2270 matches

– Query Criteria (less flexible mechanisms are provided): All words: compo-

sition event stream model; Exact phrase: complex event processing; At min-

imum one of these words: architecture model organisation organization ar-

rangement composition setup formation design distribution

– filter: Limit to years 2012 up to 2018

A.6 Evaluation

The following approach was used to select the most relevant papers:

• Stage 1: Apply a search criteria to filter and export articles from relevant databases;

• Stage 2: Eliminate duplicates;

• Stage 3: Discard article whose tags are not relevant for this study;

• Stage 4: Read title and summary (abstract) of work and establish which ones show

any potential for contributing;

• Stage 5: Consider introduction and conclusion of selected articles and keep the ones

that relate to the subject searched;

• Stage 6: Snowball on remaining ones where applicable;

By filtering duplicate papers and discarding the one presenting tags that were not rel-

evant (such as signal processing circuit technologies), the number of matches (from all
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databases) went down to 2754 unique instances. The majority of those articles was fo-

cused in practical issues, specially on achieving better performance metrics on big data

scenarios, with no contributions on the design aspect for CEP components. Just by filter-

ing out articles based on title and abstract and inspecting further relevant tags, the number

of matching articles became 394.

By selecting relevant papers according to abstract and introduction text, matches went

down to 129.

After reading and analysing the remaining papers, aiming at identifying relevant dis-

cussions that relate to the research questions, only 28 presented relevant information to

subside this research (CUGOLA; MARGARA, 2012; RENNERS; BRUNS; DUNKEL,

2012; ARTIKIS et al., 2012; LINDGREN; PIETRZAK; MÄKITAAVOLA, 2013; MAR-

GARA; SALVANESCHI, 2013; MENDES;BIZARRO;MARQUES, 2013; STOJANOVIC

et al., 2014; BAUER; WOLFF, 2014; NECHIFOR et al., 2014; BAUMGÄRTNER et

al., 2015; PERERA; SUHOTHAYAN, 2015; KOLCHINSKY; SHARFMAN; SCHUS-

TER, 2015; KHARE et al., 2015; CARBONE et al., 2015; VELASCO; MOHAMAD;

ACKERMANN, 2016; BAPTISTA et al., 2016; RISCH; PETIT; ROUSSEAUX, ; RAY;

LEI; RUNDENSTEINER, 2016; FALK; GURBANI, 2017; MAYER; MAYER; ABDO,

2017; DOBBELAERE; ESMAILI, 2017; D'SILVA et al., 2017; ICHINOSE et al., 2017;

CANIZO et al., 2017; YADRANJIAGHDAM;YASROBI; TABRIZI, 2017; ZIMMERLE;

GAMA, 2018; MANJUNATHA;MOHANASUNDARAM, 2018; DAYARATHNA; PER-

ERA, 2018), complemented by 3 studies obtained by snowballing those (PASCHKE;VIN-

CENT, 2009; MENDES; BIZARRO; MARQUES, 2008; TEYMOURIAN; PASCHKE,

2010). Two of these papers ((PASCHKE;VINCENT, 2009; TEYMOURIAN; PASCHKE,

2010)) also served as a reference for 3 industry publications (MOXEY et al., 2010; OR-

ACLE, 2010; BASS, 2006), summarizing a total of 34 studies as a result of this review.

We observed a gap in the literature - there is no model resulting from this research

that represents the basic characteristics of EPA composition. There is a wide variety of

published articles related to CEP research, but mostly focused on implementation aspects.

This study will enable us to bring together all the knowledge dispersed in publications in

an artifact that provides guidance on EPA compositions and also represents the state of the

art for CEP processing.



B. Model Components - related attributes and methods

B.1 Event & Event Type

Tables B.1 to B.7 outline attributes and methods related to model components from

Section 3.4.1.

Table B.1: Event
Attributes

Name Description

id a system-generated unique ID for an Event instance, helpful to
diagnose issues and trace individual occurrences.

Table B.2: EventPayload
Attributes

Name Description

attributeValues a Set of business attributes included in events. To fetch the ap-
propriate object type for the value, casting can be determined
from getValueType call in EventAttribute instance (inherited
from DataAttribute - see Section 3.4.3).

Table B.3: EventOpenContent
Attributes

Name Description

annotation an optional free-text explanation of what happened in this partic-
ular event. Event producer or EPA can use it to supply an event
instance with explanation for documentation purposes.

102
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Table B.4: EventAttribute
Attributes

Name Description

derived besides DataAttribute inherited behavior and data structures (see
Section 3.4.3), this specialization indicates whether this is a raw
event, originated from an EventProducer, or a derived event in-
troduced by an EPA.

Table B.5: EventHeader
Attributes

Name Description

occurrence this attribute indicates the occurrence time attribute with a preci-
sion given by the event type’s temporal granularity (see chronon).
It may be actually be in a finer granularity, but, for all process-
ing purposes, it should be rounded to the chronon granularity.
It records the time at which the event occurred in the external
system. This value is provided by the event producer or EPA.

chronon denotes the temporal granularity via TemporalUnit instance (see
Section 3.4.2), the atom of time related to the event occurrence
from a particular application’s point of view (second, hour, quar-
ter, season, etc.).

detection The detection time attribute is a timestamp that records the time at
which the event became known to the CEP system (in chronon’s
temporal granularity).

source a reference to EventEmitter (see Section 3.5.1), containing a shal-
low clone of the entity that originated this event. It is sometimes
useful for an event processor to know where an event instance
came from.

certainty an estimate of the certainty of this particular event, provided by
producers, when applicable. The event certainty attribute has a
value between 0 and 1.0 - the latter if it is certain that this event
occurred as indicated in its payload, and lower based on the risk
that the event did not occur as described.

causers a list of event ids whose accumulated processing generated the
current event, denoting a cause-effect relationship.

type A reference to EventType object, whose class attributes are fur-
ther described.

filterAttrs specifies a list of Strings related to BusinessAttribute names. Op-
timizations introduced in CEP platforms can leverage this list of
relevant attributes, thus reducing the payload, minimizing net-
work latency and optimising throughput.
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Table B.6: EventType
Attributes

Name Description

id uniquely identifies the type of an event element. Used by the
event consumer or EPA that receives the event instance to dis-
cover its type.

description a text explanation regarding relevant event characteristics cate-
gorized in each event type.

parent the self association indicates that an event type may be a compo-
sition of another event type.

Table B.7: EventFactory
Methods

Name Description

createEvent returns an Event instance, provided the following parameters:

• [1] EventType;

• [2] Timestamp of occurrence;

• [3] TemporalUnit granularity value;

• [4] EventEmitter instance who provided this event;

• [5] a Map<EventAttribute, Object>, related to EventPayload;

• [6] an annotation for EventOpenContent (may be empty/null).

Other Event attributes are created by the Factory class, such as
detection timestamp.

B.2 Context

Tables B.8 to B.15 outline attributes and methods related to model components from

Section 3.4.2.
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Table B.8: ContextComponent
Attributes

Name Description

id a system-generated unique identity value for an instance de-
signed as per the composite pattern (GAMMA et al., 1995),
which deals uniformly with a single or a group of Context el-
ements. The id helps for monitoring threads.

Methods

Name Description

getWindowId on the arrival of each Event, dispatches a call to its subclasses to
consolidate responses into a String that represents a window that
holds this occurrence and the following, correlated ones. The
arrived event may be the initial occurrence in this grouping (for
which a new String is returned) or a subsequent occurrence, as-
signed to an existing window id string - see how a windows are
represented for partitions in Section 3.6.2.

isPertinent once we have an active window in place we will need to detect
event occurrences that relate to it, as they come. For further infor-
mation see ContextEPAComposite in Section 3.6.2. It is marked
as abstract since it can be implemented differently for single and
composite subclasses.

getStartMoment supports a case where we indicate an initial moment to trigger
processing of context-based EPAs.

getEndMoment this attribute supports a case where we indicate a final moment
to abort processing of context-based EPAs.

Table B.9: Context
Methods

Name Description

getInnerWindowId a Function triggered by getWindowId on the arrival of an Event
- retrieves a String that represents a window partition on each
each composed Context (e.g., a partition based on initial times-
tamp and an amount of time for a FixedTemporalContext). Its
implementation is delegated to subclasses.

getInnerPertinence the logic behind isPertinent, it provides a Predicate (defined for
each pertaining Context components) that verifies if an incom-
ing Event matches a windowmembership criterion. Besides cur-
rent event, attributes from window initial event, such as creation
timestamp, may apply.
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Table B.10: ContextComposite
Attributes

Name Description

children a Set with all composed Context instances. As the instance over-
rides ContextComponent methods, this helps ContextCompos-
ite processing Context compositions, consolidating information
from all Set components.

Table B.11: EventContext
Attributes

Name Description

acceptCriterion a Predicate based on a Set of EventTypes, used to determine the
context acceptance condition for incoming events. If neither or-
der nor completeness are enforced (other attributes), an occur-
rence matching any of the EventType instances from this set is
accepted. If order is enforced, only events in the specified or-
der of the Set are accepted. If completeness is enforced, evalua-
tion for acceptance is postponed and only combinations of Event
instances that fully match EventTypes from acceptCriterion are
accepted.

orderEnforced this signals the order of EventTypes matters for accepting Event
instances.

completenessEn-
forced

signals the requirement of a full match of event types from the ac-
ceptCriterion Set to the ones assigned to Event instances. When
not enforced, partial matches are accepted.

Table B.12: SegmentedContext
Attributes

Name Description

partitionCriterion a Predicate, based on a Set of event attributes, determines the
context acceptance condition. Context segmentation that drives
EPA processing can be established based on business data classi-
fications (such as profile from bank customers on risk assessment
operations over financial transactions).
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Table B.13: TemporalUnit
Enumeration

Values Description

MINUTE,
HOUR, DAY,
MONTH, ..

Enumeration types of temporal unit.

Table B.14: TemporalContext
Attributes

Name Description

unit a TemporalUnit item. Along with size, used to establish the time-
frame for which the window lasts (size x unit of time).

size amount of units of time above.

Table B.15: FixedTemporalContext
Attributes

Name Description

initialMark apart from TemporalContext attributes, this sets a specific mo-
ment for the start of a window (e.g. 00:00 hours). All successive
occurrences within the timeframe are assigned to the same win-
dow, therefore provisioning a reduced number of context-based
EPA, as we compare it to TemporalContext, where each occur-
rence dispatches a window and can join other windows.

B.3 Event Data

Table B.16 outlines attributes and methods from Section 3.4.3.
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Table B.16: DataAttribute
Attributes

Name Description

name identifier for existing attributes. Enables event content filtering
on pre-processing stages (see Section 3.5.2.

value if present, this holds a value of an attribute (thus the usage of
Optional). The value can be of any type, as long as it can be
serialized (for streaming).

Methods

Name Description

getValueType retrieves the class type of the attribute value, enabling consumers
to properly cast the value into appropriate data structures.

B.4 Event Producer

Tables B.17 to B.19 outline attributes and methods related to model components from

Section 3.5.1.

Table B.17: EventEmitter
Methods

Name Description

publishEvents this interface method decouples the activity of publishing events
and is reused by event producers and EPA. Parameters are: Op-
tional<PublishPattern>, for validating the events; the derived or
published events; and the target channel (see Section 3.7.1).
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Table B.18: PublishPattern
Attributes

Name Description

types a possibly empty collection of EventType instances, for valida-
tion prior to publishing events. If this is not empty, an Event
is published if its EventType matches one of the elements from
this Set. Required attributes can be enforced by setting them on
instances from this collection.

Table B.19: EventProducer
Attributes

Name Description

annotation on top of the inheritedmethods and attributes, EventProducer has
a free formatted field (optional) to enable CEP solutions keep
track of information that is specific to Event originators.

Methods

Name Description

constructor instantiates EventProducer, sets the Channel instance (see Sec-
tion 3.7.1) and the PublishPattern (Table B.18).

B.5 Event Consumer

Tables B.20 to B.22 outline attributes and methods related to model components from

Section 3.5.2.

Table B.20: EventFetcher
Methods

Name Description

subscribeEvents an interface method private implementation for subscribing
events from channels, reused by EventConsumer and EPA. Pa-
rameters are: SubscriptionPattern (Table B.21), for filtering
events and attributes; and the source channel (see Section 3.7.1).
As a result we obtain a Stream with the relevant occurrences.
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Table B.21: SubscriptionPattern
Attributes

Name Description

filterByTypes a BiPredicate accepts or rejects each event (first parameter) ac-
cording to a collection of distinct EventType instances (second
parameter) - can be used to validate the subscribed events from
EventFetcher stream.

map a BiFunction allows reducing event content according to a Bi-
Function implementation that pulls, from original Event occur-
rences, only the relevant attributes (selected according to a Set
of EventAttributes).

filterByHeader a BiPredicate accepts or rejects each event (first parameter) ac-
cording to a template EventHeader instance (second parameter)
that can be used to validate the subscribed events (for instance
restricting event source).

Table B.22: EventConsumer
Attributes

Name Description

annotation on top of the inherited methods and attributes, EventConsumer
has a free formatted field to enable CEP solutions to keep track
of information that is specific to consumers (the destiny software
solutions).

Methods

Name Description

constructor instantiates EventConsumer, sets the Channel instance (see Sec-
tion 3.7.1) and the SubscriptionPattern (Table B.21).
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B.6 EPA

Tables B.23 to B.25 outline attributes and methods related to model components from

section 3.6.1.

Table B.23: EPAComponent
Attributes

Name Description

id a system-generated unique ID, applies for single and composite
EPAs. This is helpful for EPA operational purposes (e.g., moni-
toring threads).

Methods

Name Description

setChannel sets the Channel instance (see Section 3.7.1).

setPubPattern sets the PublishPattern (see Section 3.5.1).

setSubPattern sets the SubscriptionPattern (see Section 3.5.2).

setProcessor supplies a StreamConsumer implementation, providing event
processing logic, triggered as applicable events (based on filter-
ing criteria) are pulled from the channel.

Table B.24: EPAComposite
Methods

Name Description

constructor instantiates EPAComposite, sets the internal Channel instance
(see Section 3.7.1).

getInternalChannel retrieves the internal Channel used by the composition members.

B.7 Stateless EPA

Tables B.26 to B.30 outline attributes and methods related to model components from

section 3.6.1.1.
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Table B.25: EPA
Attributes

Name Description

referenceData-
GlobalStateId

holds a reference to an instance of GlobalState (ReferenceData-
GlobalState specialization, see Section 3.6.1), from which it
fetches technical parameters, such as log level, timeout, and
event buffer (cached for performance purposes).

Methods

Name Description

default construc-
tor

instantiates EPAs that are not part of compositions.

parameterized
constructor

instantiates EPAs that are part of compositions, which commu-
nicate via the inner channel indicated by the parent attribute, an
EPAComposite.

Table B.26: FilterAttributes
Attributes

Name Description

rejectFilter a Predicate implementation for rejecting events, based on at-
tributes bound to Event internal data structures (payload, header,
etc. - see Section 3.4.1), possibly validating them based on ex-
ternal data (from GlobalState).

acceptFilter similar to the Predicate above, but the implementation is pro-
vided with the logic to accept events.

Table B.27: StatelessFilterEPA
Attributes

Name Description

attrs an instance of FilterAttributes (Table B.26), allows more elab-
orated filtering operations through the usage of Predicate func-
tions.

Table B.28: TranslateEPA
Attributes

Name Description

map a conversion Function implementation, allows simple Event
transformations based on existing attributes.
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Table B.29: ReferenceDataParameter
Attributes

Name Description

refDataGlobal-
StateId

identifies the GlobalState used to pull information from an exter-
nal data source.

searchedData the identifier for the data attribute required to pull the exter-
nal information - defined as a ReferenceDataAttribute (see Sec-
tions 3.4.3 and 3.8).

newAttribute-
Mapper

a Function implementation to transform the attribute retrieved
from external source into the new event attribute (EventDataAt-
tribute, from Sections 3.4.3 and 3.8).

Table B.30: EnrichEPA
Attributes

Name Description

map a BiFunction implementation drives complex Event transforma-
tions based on both existing attributes and external Data (fetched
via GlobalState instances). New Event attributes may be incor-
porated into existing Event data structure, while existing data
may or not be preserved, according to this logic.

B.8 Stateful EPA

Tables B.31 to B.37 outline attributes and methods related to model components from

section .

Table B.31: StatefulEPA
Attributes

Name Description

buffer a UnaryOperator that buffers each Event while traversing the
stream of Events. This operation is pipelined in front of the
main StreamConsumer operation, returning the same Event af-
ter buffering so that it remains an argument to StreamConsumer.
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Table B.32: StatefulFilterOperator
Enumeration

Values Description

FIRST_N,
LAST_N,
RANDOM_N,
TOP_N,
BOTTOM_N

Enumeration types that drive sampling processes.

Table B.33: StatefulFilterEPA
Attributes

Name Description

attrs an instance of FilterAttributes (Table B.26).

operator An instance of StatefulFilterOperator (Table B.32) - determines
a sampling strategy. Depending on the strategy, the EPA is
required to be processed according to a Context. Except for
FIRST_N case, filtering process is only triggered once all events,
under a context partition, are received (i.e., a window terminate
condition is met - see Section 3.6.2 for details).

countArg sampling size - "N", in StatefulFilterOperator types.

Table B.34: AggregateOperation
Attributes

Name Description

reduceOpIdentity an associative operation identity value. Acts as a starting value
for reduceOperator processing (e.g. 0 for sums, 1 for product,
etc.)

reduceOperator a BinaryOperator to infer an aggregated value of type T. Com-
puted incrementally while traversing a stream of events, pulling
a T value for each (through mapOperator), and considering the
previously calculated value (partial result) of type T.

useThreshold indicates if a threshold should be used (e.g., if the calculated sum
reaches an unsafe boundary for the business).

threshold-
Comparison

a BiPredicate confirms the reduced inferred value reaches a
threshold (e.g., calculated value ≥ threshold).

mapOperator a Function returns a value of type T from anEvent instance, based
on one attribute or a combination of its attributes, and possibly
considering data external to the event instance.
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Table B.35: AggregateEPA
Attributes

Name Description

aggregation supplies the AggregateOperation (Table B.34) instance needed
to infer an object of type T, according to a reduction operation.
The generic T parameter varies from a simple structure (e.g., a
sum value) to a complex one (e.g. centroid nodes, see Section
3.6.1.4).

mapOutput-
Occurrence

a Function implementation that derives a Event based on the out-
put (T) from reduction operation.

Table B.36: UnmatchedPolicy
Enumeration

Name Description

FAIL, FORWARD Indicates the strategy to be adopted when an event coming from
one stream does not match any event from the other stream -
a scenario applicable for ComposeEPA (Table B.37) process-
ing. FAIL means an abnormal terminate condition is reached,
whereas FORWARD means this occurrence is buffered and pro-
cessing continues.
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Table B.37: ComposeEPA
Attributes

Name Description

acceptanceFilter specifies a matching condition, provided two events, one from
the usual stream (via an inner or global channel) and the other
from the stream specified via subscribeFromNewStream. This
BiPredicate returns true if they match, and it is verified every
time an event arrives, coming from either one of the streams.
The matching condition is checked between this event and each
event from the other stream (stored in a buffer). This is usu-
ally processed under finite partitions, since a polinomial order of
growth is expected when traversing buffers for occurrences.

map BiFunction logic to produce a new Event from two matching
Events (each from a different stream). Triggered every time ac-
ceptanceFilter returns true.

streamsUn-
matchedPolicy

UnmatchedPolicy reference to be verified whenever a new event
from one stream does not match any of the accumulated events
from the other stream.

Methods

Name Description

subscribeFrom-
NewStream

indicates the Channel and SubscriptionPattern to fetch events
from a separate stream, whose occurrences may present rele-
vance when compared to the ones coming from EPA usual Chan-
nel. For instance, an EPA may subscribe to "departure" events
and check their crossed correlation with "arrival" events.

B.9 Pattern Detect EPA

Tables B.38 to B.49 outline attributes and methods related to model components from

section 3.6.1.3.
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Table B.38: EvaluationMode
Enumeration

Values Description

IMMEDIATE,
DEFERRED

Indicates that the evaluation should be performed at occurrence
time, or postponed to a Context terminate condition (see Section
3.6.2).

Table B.39: OrderMode
Enumeration

Name Description

STREAM_POS,
USER_DEFINED,
DETECT_TIME,
OCCURR_TIME

Indicates the criterion to be considered for the order of events.
Among the options we have: the stream position (from streaming
platform); a user-defined attribute (being the logic provided via
orderCompare); the actual event occurrence time; and the time
an event becomes known to our CEP solution.

Table B.40: ExcessMode
Enumeration

Name Description

LAST,
FIRST,
EVERY

Indicates the criterion to be considered if the amount of events
exceed the established excessLimit (see Table B.42). We may
disregard the limit - EVERY; or consider only the first or last
occurrences. This usage implies EPA is processed according to
a TemporalContext, and EvaluationMode is DEFERRED.
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Table B.41: ReuseMode
Enumeration

Name Description

CONSUME,
REUSE,
BOUNDED

Types that act as an expiration condition. Wemay consider an oc-
currence only one time, then remove from any future buffering
mechanism - CONSUME; or considerN number of times, mean-
ing buffering is maintained until a reuseLimit (see Table B.42) is
reached - BOUNDED; or even REUSE, where no expiration is
in place.

Table B.42: MatchingPolicy
Attributes

Name Description

excess an ExcessMode (Table B.40) instance.

excessLimit maximum amount of Event instances, to be considered along
with excess attribute.

evaluation an EvaluationMode (Table B.38) instance.

reuse a ReuseMode (Table B.41) instance.

reuseLimit maximumnumber of times an event is supposed to be considered,
to be considered along with the reuse attribute.

order an OrderMode (Table B.39) instance.

orderCompare the lambda expression to be considered along with the order at-
tribute (as long as it is established as USER_DEFINED).

Table B.43: PatternDetectEPA
Attributes

Name Description

matchingPolicy an instance ofMatchingPolicy (Table B.42), set in order to clarify
the semantics of pattern matching operations. Drives EPA agents
to act on the occurrence of multiple events.

Table B.44: PatternSequence
Enumeration

Name Description

UNORDERED,
TEMPORAL

Indicates if searched EventType items should be considered in
the same order established in typeSet (Table B.46).
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Table B.45: PatternModal
Enumeration

Name Description

ALL,
SOME,
NONE

Indicates the processing logic in regard to the typeSet (Ta-
ble B.46) attribute: ALL, if only a full match of EventType items
satisfies the criteria; SOME when the criteria is satisfied by at
least one match; or NONE, where the criteria is accepted if none
of the subscribed events apply to any element from this set.

Table B.46: BasicPatternDetectEPA
Attributes

Name Description

typeSet a LinkedHashSet of EventType items is defined in this attribute.
This EPA is always processed according to a context, with its
EvaluationMode marked as DEFERRED. At the closure of the
context segment, the subscribed event instances are evaluated ac-
cording to sequence and modal attributes.

modal an instance of PatternModal (Table B.45). Considering Event-
Type from all incoming events within a segmented Temporal-
Context, and their relationship to items from typeSet, this at-
tribute indicates if a matching should be satisfied by all typeSet
participants, or by some (or even none) of its members.

sequence an instance of PatternSequence (Table B.44), relates to the order
EventType items (from typeSet) should be considered.

Table B.47: ConditionalPatternDetectEPA
Attributes

Name Description

condition this Predicate provides an acceptance criterion based on Event
data structure. It is evaluated for each occurrence and possibly
reduces the population of matched occurrences.

Table B.48: TrendType
Enumeration

Name Description

INCREASING,
DECREASING,
STABLE,MIXED,
NONINCREASING,
NONDECREASING

indicate the desired tendency, according to the relationship
between sequential events (provided in trendCheck, from Ta-
ble B.49) and how this is expected to vary through time.



APPENDIXB. MODELCOMPONENTS - RELATEDATTRIBUTESANDMETHODS120

Table B.49: TrendPatternDetectEPA
Attributes

Name Description

type an instance of TrendType, establishes the pursued tendency.

trendCheck a BiPredicate function correlates pairs of sequential Event in-
stances via trendCheck, and also maintains a set historical mea-
surement values.

threshold an optional element can be provided so that this processing re-
acts (deriving new events) only to changes quantified with a
value greater than this attribute (the value comes from trend-
Check logic). Larger thresholds can also be used to pick outlier
events.

B.10 Clustering EPA

Table B.50 outlines attributes and methods related to the main model component from

section 3.6.1.4.
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Table B.50: ClusteringEPA
Attributes

Name Description

k contains number of centroids.

centroids an array with k entries holding each centroid, an element of
generic type C.

distanceInference BiFunction that derives values that represent distances between
the occurrence (first parameter) and each Centroid, of type C,
from centroids (second parameter). This implementation outputs
an array with those distances with Double precision, where each
array position in the return type correlates to the centroid position
from the second parameter.

regenerate-
Centroids

Function that derives a new centroid (according to median,
means, medoid or any algorithm that best represents the goal)
from a list of the Events currently assigned to one cluster.

trainingPer-
centage

applies within a Context - this optional attribute indicates the per-
centage of data used for training, picking it from initial events
within a context segment.

predictionPer-
centage

applies within a Context - this optional attribute indicates the
percentage of data used for prediction, picking from final events
within a context segment.

timeToLive time to live - if provided, the amount of time an Event is con-
sidered relevant since its occurrence. This attributed is used in
conjunction with ttlTimeUnit.

ttlTimeUnit the temporal unit associated with timeToLive amount.

clusterElements List of relevant Event instances considered for clustering

clusterCentroids Map that relates each relevant Event instance from clusterEle-
ments to the centroid which presents minimal distance, as seen
in distanceInference.

maxIterations an optional attribute to limit the run-time of the clustering algo-
rithm by establishing the maximum number of iterations.

Methods

Name Description

initCentroids initializes centroids, can be performed via reflection Array
newInstance call. This requires a strong typing, thus the Class
parameter. The number of clusters (array size) is the second pa-
rameter.
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B.11 Context Partitioner

Tables B.51 to B.53 outline attributes and methods related to model components from

Section 3.6.2.

Table B.51: Window
Attributes

Name Description

id a system-generated unique ID for an individual Window in-
stance, which is helpful for ContextPartitioner (Table B.53) to
identify instances that have already been provisioned.

initialEvent the first of a series of events that belong to a window. This occur-
rence has a particular relevance, since the window id may have
been originally inferred based on its attributes (such as occur-
rence timestamp and customer profile).

ctx the ContextComponent instance (see Section 3.4.2) associated
with the Window. This instance assists on determining the perti-
nence of further event occurrences to this Window, via a call to
its isPertinent method.

Methods

Name Description

constructor instantiates a Window according to an initial Event and an exist-
ing ContextComponent, provided by ContextPartitioner.
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Table B.52: ContextEPAComposite
Attributes

Name Description

window holds a Window instance, provided by ContextPartitioner (Ta-
ble B.53), that relates to this instance.

Methods

Name Description

constructor sets the Channel instance (see Section 3.7.1) and the Window
instance, provided by ContextPartitioner (Table B.53).

isTerminateCon-
dition

pulls the ContextComponent associated to the window instance
and calls getEndMoment to verify if it should cease activities.

isEventApplicable dispatched at the arrival of subscribed Event instances, this
method pulls both ContextComponent and initialEvent associ-
ated to the window instance and calls isPertinent to verify if the
incoming Event applies to this Window segment.
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Table B.53: ContextPartitioner
Attributes

Name Description

windowIdSet holds a collection of ids from all distinct Window instances pro-
visioned by ContextPartitioner. As this instance pulls events,
each new occurrence is evaluated according to isNewWindowRe-
quired - which indicates whether a new Window (Table B.51)
should be provisioned (therefore updating this collection) or if
this event applies only to an existing Window.

Methods

Name Description

constructor instantiates ContextPartitioner, sets the ContextComponent in-
stance (see Section 3.4.2), the global Channel (see Section 3.7.1)
and the ContextEPAComposite instance (Table B.53), which
serves as a template for the creation of EPAs from cloneIncep-
tiveEPA.

isNewWin-
dowRequired

each new event is evaluated according to this method - which
indicates whether a new Window should be provisioned, or if
this Event applies to an existing Window. It does do by using
the subscribed Event as initial parameter to getWindowId, from
ContextComponent, which retrieves a Window Id that may al-
ready exist in windowIdSet. If that is the case, the event will be
handled by the existing ContextEPAComposite associated to the
existing window. Otherwise, it provisions a newWindow and its
related ContextEPAComposite instance, via cloneInceptiveEPA.

cloneIncep-
tiveEPA

dispatched every time a new Window instance is required. It
reuses template parameter from the constructor to provision a
new ContextEPAComposite, which starts subscribing and han-
dling the processing of all events that belong to this new Win-
dow - i.e., an agent is provisioned to handle occurrences from an
event stream segment, according to its Context semantics, for as
long as the Context is valid.

B.12 Offline Event Loader

Table B.54 outlines attributes and methods related to Section 3.6.3.
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Table B.54: OfflineEventLoader
Methods

Name Description

scheduleExpres-
sion

an expression (e.g. with standard cron syntax) used to schedule
batch loading tasks to run periodically at a specific date and time.

constructor in addition to EventProducer constructor parameters (see Sec-
tion 3.5.1), this requires an identity value for EventGlobalState,
which allows it to pull batches of events from a repository (see
Section 3.8). Further in the process, it can publish events based
on Channel and PublishPattern parameters (see Section 3.7.1).

B.13 Channel

Tables B.55 to B.57 outline attributes and methods related to model components from

Section 3.7.1.

Table B.55: EncodedEvent
Attributes

Name Description

encodedContent holds a serialized Event, resulting from encodeEvent Function
call, from a Channel.
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Table B.56: Channel
Attributes

Name Description

encodeEvent a Function transforms Event instances into a proper format for
optimized sizing and performance (EncodedEvent, from Ta-
ble B.55);

decodeEvent a Function rebuilds Event instances out of EncodedEvent;

streamPlatform-
ConnectivitySettings

connectivity attributes related to the chosen streaming platform.

Methods

Name Description

publish establishes a connection with stream platform and invokes
its available mechanisms for publishing events as messages.
Through the usage of encodeEventFunction, transforms Event
into EncodedEvent instances prior to pushing them into the plat-
form. A batch of EncodedEvent elements (instead of a single
instance) can be pushed for better latency.

consume establishes a connection with stream platform and invokes its
availablemechanisms for subscribing events according to criteria
(for instance, via message topics). At this moment, advanced fil-
tering may be dispatched on stream platforms (if available) while
fetching events - i.e., based on the incoming SubscriptionPat-
tern parameter (See Table B.21) we may restrict pulling to events
(and event attributes) that match the specified acceptance criteria.
Through the usage of decodeEventFunction, this method trans-
forms EncodedEvent into Event instances as they are consumed
from the platform - which is invoked as part of stream pipeline
processing. If stream platforms do not provide advanced filter-
ing mechanisms, this component can filter data after decoding
is performed. In any case, as a result, the channel clients will
be provided a Stream of Event instances, which may be an infi-
nite Stream, populated as applicable events arise. This implies
in establishing connectivity for continually fetching subscribed
messages, until a termination criteria is met.
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Table B.57: ChannelBroker
Attributes

Name Description

globalChannel the global channel instance.

innerChannels amap containing all inner channels, associated to an EPA compo-
sition. Its key is the composite EPA id parameter (coming from
getCompositeEPAChannel call).

Methods

Name Description

getGlobalChannel retrieves the instance for globalChannel (creates if it does not
exist yet).

getComposite-
EPAChannel

checks innerChannelsmap for the existence of a channel associ-
ated to the EPA id (method parameter) and returns it if so. Other-
wise, creates a newChannel instance, segregated from theGlobal
Channel (an inner channel, for all EPAswithin the indicated com-
posite EPA), and add it to the map.

B.14 Global State

Tables B.59 to B.65 outline attributes and methods related to model components from

Section 3.8.

Table B.58: AttributeContainerType
Enumeration

Values Description

DOCUMENT,
COLLECTION,
VIEW, SCHEMA,
TABLE, SET, ..

Enumeration types of container data structures.
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Table B.59: GlobalStateDataStore
Attributes

Name Description

dataSourceSettings properties containing settings such as connectivity and caching
for a data store. Based on that, an internal query provider in-
stance is created, whose implementation is left out of scope of
this model.

Methods

Name Description

query pulls information (of generic type R) from the data store by in-
teracting with to the internal query provider instance, based on
dataSourceSettings.

update inputs information into the data store by interacting with the in-
ternal query provider instance, based on dataSourceSettings.

Table B.60: AttributeContainer
Attributes

Name Description

name identifies the data structure element (VIEW, TABLE, DOCU-
MENT, etc) by its name.

type an instance of AttributeContainerType (Table B.58).

parent indicates a parenthood relationship to another instance of At-
tributeContainer (e.g. a DOCUMENT element relates to a par-
ent element of type COLLECTION, as a TABLE relates to a
SCHEMA).

Table B.61: ReferenceDataAttribute
Attributes

Name Description

container in addition to DataAttributes inherited data structure and behav-
ior (see Section 3.4.3), this attribute provides the container en-
tity, within its data source, that encompasses this element - an
instance of AttributeContainer (Table B.61).
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Table B.62: GlobalStateProvider
Attributes

Name Description

globalStateRefs a map that maintains a reference for previously created Ref-
erenceDataGlobalState (Table B.64) and EventGlobalState (Ta-
ble B.65) instances.

Methods

Name Description

getReferenceDa-
taGlobalState

pulls the ReferenceDataGlobalState instance (if applicable) from
globalStateRefs, based on provided id, validates connectivity to
this data source and retrieves an Optional element wrapping it.
Clients should use it check connectivity from time to time.

getEventGlob-
alState

pulls the EventGlobalState instance (if applicable) from glob-
alStateRefs, based on provided id, validates connectivity to
this data source and retrieves an Optional element wrapping it.
Clients should use it check connectivity from time to time.

createEventGlob-
alState

instantiates EventGlobalState, provided the following parame-
ters:

• [1] GlobalStateDataStore instance (Table B.59) with connec-
tivity settings;

• [2] The representation for the database row or tuple;

• [3] queryMap, the Function implementation to pull an Event
from a database row;

• [4] updateMap, the Function implementation to pull an update
statement String from an Event.

Adds the new instance to globalStateRefs prior to returning it.

createRefData-
GlobalState

Returns an ReferenceDataGlobalState instance, provided the fol-
lowing parameters:

• [1] GlobalStateDataStore instance with connectivity settings;

• [2] The representation for the database row or tuple;

• [3] queryMap, the Function implementation to pull a Refer-
enceDataAttribute from a database row;

• [4] updateMap, the Function implementation to pull an update
statement String from a ReferenceDataAttribute.

Adds the new instance to globalStateRefs prior to returning it.
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Table B.63: GlobalState
Attributes

Name Description

id a system-generated unique ID for an individual GlobalState in-
stance, which is helpful for providing EPA proper state elements.

dataStorage GlobalStateDataStore instance that intermediates data store ac-
cesses.

Methods

Name Description

query + pulls information from the data store according to an expression
String. This invokes the protected query implementation, which
maps the query data structure outcome into the proper model ob-
ject.

query # used by GlobalState subclasses, that pulls information from the
data store (via dataStorage query) andmaps each resulting record
into an Event or ReferenceDataAttribute instance, based on the
queryMapper Function provided by subclasses.

persist + inputs information into the data store according to an expression
String. This invokes the protected persist implementation, which
maps the proper model structure into an update statement.

persist # used by GlobalState subclasses, that inputs information into the
data store (via dataStorage update) and maps each input Event
or ReferenceDataAttribute instance into a statement, based on
updateMapper Function provided by subclasses.

+ Denotes a public method.

# Denotes a protected method.



APPENDIXB. MODELCOMPONENTS - RELATEDATTRIBUTESANDMETHODS131

Table B.64: ReferenceDataGlobalState
Attributes

Name Description

queryMapper used in conjunction with query operations, maps each record
retrieved from the database into a ReferenceDataAttribute (Ta-
ble B.61).

updateMapper used in conjunction with persistence operations, maps each Ref-
erenceDataAttribute (to be persisted) into an update statement.

Methods

Name Description

getQueryByAt-
tributeExpression

pulls a query statement based on the ReferenceDataAttribute pro-
vided as a parameter, serving as a template. For instance, the
ReferenceDataAttribute name and container can be provided (so
that a query would bring a single instance), or just the container
(a query would bring all attributes within the container).

Table B.65: EventGlobalState
Attributes

Name Description

queryMapper to be used in conjunction with query operations, maps each
record retrieved from the database into an Event (described in
Section 3.4.1).

updateMapper to be used in conjunction with persistence operations, maps each
Event to be persisted into an update statement.

Methods

Name Description

getQueryByDate-
Expression

pulls a query statement based on a date range (according to an
initial and final date - by convention we consider those as inclu-
sive dates).

getQueryByE-
ventExpression

pulls a query statement based on the Event provided as a param-
eter, serving as a template. For instance, the Event id can be
provided, so that a query would bring a single instance; or just
the EventHeader source attribute, and a query would bring all
Events produced by the specified EventEmmitter.



C. Coupling Metrics Evaluation

Here we provide the rational used for the elaboration of Table 4.9.

As previously indicated, for each class we identify dependencies from the CEP model

in Section 3.3, according to the definitions of CBO, NDO and RECBO, from Section 4.1.2.

For RECBO, refer to instances depicted in Figures 4.9 and 4.10. This analysis did not

include: dependencies to Java API objects (such as List), Enumeration instances and tem-

plate parameters (which relate to API objects defined dynamically). References indicated

for the metrics obtained on Table C.1 are described on Table C.2.

Table C.1: Coupling-Related Measurements
Class Object(s) CBO NDO RECBO

EventProducer LSTN_G1.1, LSTN_G1.2, P_G2.3,
P_G2.4

5 i 0 ii 0 ii

OfflineEventLoader OL_G4.7, OL_G4.8, OL_G3 7iii 0 ii 0˜ii

EventGlobalState GS_G3_CAS, GS_G4.7, GS_G4.8 3iv 2 v 1 v

EventConsumer CONSUMER_G1234 5 i 0 ii 0 ii

ReferenceDataGlobalState GS_G4.CORP_ID, GS_CL1234 5vi 2 v 1 v

EnrichEPA ENRICH_G4 9vii 1 viii 0 ix

StatefulFilterEPA FILTER_G1, FILTER_G234 7x 1 viii 0 ix

ClusteringEPA CLUSTER_G1234 8xi 1 viii 0 ix

ContextEPAComposite COMPOS_G1.8, COMPOS_G234.6,
COMPOS_G234.2, COMPOS_G1234.7,
COMPOS_G1234.8

9 xii 1 xiii 0 ix

AggregateEPA AGGR_G1_VI, AGGR_G234_I,
AGGR_G234_VI, AGGR_G1234_II,
AGGR_G1234_III

8 xi 1 xiv 0 ix

Channel Global, ContextII, ContextIII, ContextIV,
ContextVI

5xv ∝ cxvi ∝ axvii

132
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Table C.2: Coupling-Related Measurements (Notes)
i Dependencies: Channel, ChannelBroker, EventEmitter, EventFactory, Event and Event Type, and
PublishPattern (for producers) and SubscrptionPattern (for consumers).
ii No other class from the model indicates dependency for this class.
iii Dependencies: Channel, ChannelBroker, PublishPattern, EventEmitter, EventType,
EventGlobalState, GlobalStateProvider.
iv Dependencies: Event, GlobalStateDataStore, EventAttribute.
v Either GlobalStateProvider factory or an offline event loader references this instance at run-time
(both are valid when counting classes.)
vi Dependencies: Event, GlobalStateDataStore, ReferenceDataAttribute, AttributeContainer,
AttributeContainerType.
vii Dependencies: Event, EventFactory, ReferenceDataAttribute, EventAttribute,
ReferenceDataGlobalState, ReferenceDataParameter, GlobalStateProvider, PublishPattern,
SubscriptionPattern.
viii References this class, at creation time: EPAComposite.
ix After instantiation, those elements are not referenced by other model components (they are only
monitored via container orchestration platform).
x Dependencies: Event, EventFactory, ReferenceDataGlobalState, GlobalStateProvider,
FilterAttributes, PublishPattern, SubscriptionPattern.
xi Dependencies: Event, EventFactory, ReferenceDataGlobalState, GlobalStateProvider,
MatchingPolicy, PublishPattern, SubscriptionPattern, AggregateOperation.
xii Dependencies: Event, EventFactory, ReferenceDataGlobalState, GlobalStateProvider,
MatchingPolicy, PublishPattern, SubscriptionPattern, Window, ContextComponent.
xiii References this class, at creation time: ContextPartitioner.
xiv References this class, at creation time: ContextEPAComposite.
xv Dependencies: Event, EncodedEvent, SubscriptionPattern, and inspect EventType and
EventAttribute (for advanced filtering)
xvi Class static references to this class: this scales according to the number of chosen EPA
Specializations (e): our model (Section 3.3) shows currently 20 classes bound to Channel, where 12
of them are EPA specializations: ChannelBroker, EventProducer, OfflineEventLoader,
EventConsumer, ClusteringEPA, EnrichEPA, StatelessFilterEPA, StatefulFilterEPA,
ContextPartitioner, EventEmitter, EPAComposite, EventFetcher, ContextEPAComposite, SplitEPA,
TranslateEPA, AggregateEPA, ComposeEPA, BasicPatternDetectEPA, ConditionalDetectEPA,
TrendPatternDetectEPA.
xvii The amount of dynamic references to this class is proportional to the number of agents (a): as
depicted in Figures 4.9 and 4.10, it scales to the 21 active agents, plus one ChannelBroker. In
reality, we reached an approximate number of 100 active agents


