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ABSTRACT

Understanding human behavior and mobility will play a vital role in urban and envi-

ronmental planning as cities continue to grow. Ubiquitous geo-location and localization

technology and availability of bigdata-ready computing infrastructure have enabled the

development of more sophisticated models to characterize human mobility in urban ar-

eas.

We start discussing the scale-free properties of some important human mobility char-

acteristics, namely spatial node density and mobility degree, and show that they exhibit

behavior that can be described by a power-law. Based on their power law characteristics,

we derive analytical models for the spatial node density and mobility degree and showed

that the data generated by the proposed analytical models closely approach empirical data

extracted from the real mobility traces. Another contribution of our work is to use the

proposed analytical models to build a synthetic mobility regime that is suitable for simu-

lations of intelligent transportation systems.

Then, we present a novel approach to identify user communities in communication

networks by using cluster techniques based on their geographical preferences. We de-

scribe our user community identification methodology in detail including how mobility

features can be extracted from real mobility traces. We present results obtained when us-

ing our approach to identify user communities in three different mobility scenarios as well

as an evaluation study comparing the performance of different clustering algorithms. In

addition, a validation methodology that uses image-based similarity metrics is proposed,

in order to assess the quality of the identified communities.

As a next step, we improve our community identification methodology by introducing

a novel deep autoencoder neural network framework. Our experiments show that the pro-

posed deep autoencoder increases the measured contact times between users belonging to

the same community by up to 80% when compared to the average contact time when not

considering community structures, and by up to 150% when compared to user communi-

ties extracted from raw datasets, i.e., without using the encoding extracted from applying

the autoencoder to the pre-processed data. Moreover, our approach also increases contact

time between members of the same community from 10% up to 125%, when compared

to an alternate community extraction approach that uses Principal Component Analysis

(PCA) instead. To the best of our knowledge, our proposal is the first to consider Deep

iv



autoencoder NNs to perform automatic extraction of non-linear features and mobility pat-

terns from real mobility datasets.

We hypothesize that users that have similar geographical preferences have also similar

interests and as such we used a deep autoencoder to pre-process raw mobility datasets

that was able to more accurately uncover community structures which identifies groups

of users sharing common geographical interests and temporal relationships. Thus, based

on the deep autoencoder results we propose a community based routing protocol named

DACCOR, which uses geographical preference features for making routing decisions.

DACCOR uses neural network to train on these features and make next hop selection

decisions. The performance of the proposed protocol is evaluated and compared with

Epidemic and Prophet routing protocols in terms of delivery probability, overhead ratio,

hop count and dropped messages.

Keywords: Opportunistic Network, Mobility Model, Community Identification, Neu-

ral Network, Autoencoder, Real Mobility Records, Data Mining, Human Mobility, Clus-

tering Algorithms.
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1. Introduction

teste According to the United Nations’ Department of Economics and Social Affairs1,

it is estimated that 55% of the world’s population currently lives in urban centers and

will reach 68% by 2050. As such, the greatest wave of city migration is yet to come

and together with it a wide range of challenges raised by the need to improve the style

and quality of life of a growing urban population. According to [Calabrese et al. 2014],

a better understanding of city dynamics would allow for improved services as well as

minimized environmental impact resulting from urban expansion.

Urban mobility, defined as the displacement of people across an urban region over

time [Boeing 2017], is critical to understand the dynamics of an urban center. As cities

grow, the complexity of urban transportation and transit systems and the time people

spend in transit will greatly increase. As a result, expanded- and new transportation

services will be required demanding deeper investigation into urban mobility [Louf and

Barthelemy 2014, Albino et al. 2015]. Additionally, understanding human mobility in

urban areas is crucial to other city management and planning applications such as public

health, emergency response, education, entertainment, shopping, etc [Hess et al. 2015a].

A notable example of “urban analytics” [Senaratne et al. 2018, Bocconi et al. 2015],

i.e., the use of information technology applied to urban planning, and in particular, Smart

Cities, is the study of human mobility. For instance, information about people with similar

geographical and temporal mobility behavior is critical for efficient and environmentally-

aware transportation and transit planning. Additionally, information on vehicle trajectory

will also be used to plan location of fueling (e.g., gas-, electric, fuel-cell) stations [Niu

et al. 2016]; car-, bike-, and scooter sharing services can also take advantage of human

movement patterns to optimize their deployments [Liu et al. 2017, Behrendt 2016].

Capturing patterns in human mobility is also important to understand and account

1https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-
prospects.html
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for social interactions which affect a range of important services such as public health

(e.g., infectious disease management), law enforcement and emergency response, social

services, recreation and entertainment, etc [Zhong et al. 2014]. Furthermore, periodic

and occasional contacts between people (and their computing/communication devices,

e.g., smart phones, smart watches) present themselves as opportunities to exchange and

forward data. Opportunistic communication is especially attractive in scenarios where

existing communication infrastructure is heavily loaded (e.g., densely populated areas,

hot spots), or its coverage is insufficient due to sparse infrastructure deployment (e.g.,

suburban regions) [Conti and Giordano 2014]. It also becomes critical in emergency

response and disaster recovery operations as the existing communication infrastructure

may become completely overloaded and/or compromised.

So much so that, over the last decade, network researchers have dedicated consider-

able attention to user mobility modelling and characterization. The importance of node

mobility in designing networks has motivated researchers and practitioners to try to use

realistic scenarios to drive the design and evaluation of wireless network protocols. Thus,

this work starts with human mobility modeling and characterization to propose a mobility

model that takes into account the behaviour found in real world mobility records. Then,

considering the behavior identified in the user’s mobility, we propose a method for extract-

ing communities that considers the clustering characteristics found in real traces based on

the users’ geographical preference. Finally, a message forwarding protocol in opportunis-

tic networks that is able to represent the behavior identified in the movement of users in

urban areas is proposed. The following sections present in general the contributions of

the present work.

1.1 Scale-Free Properties of Human Mobility and Applications to Intelligent Trans-
portation Systems

Studying mobility traces is crucial to understanding the properties of the human mo-

bility with the aim of providing human mobility characterization and to design efficient

data forwarding protocols. With that in mind, in Chapter 2 we start by showing em-

pirically (using real mobility traces collected in a variety of scenarios) that spatial node

density (the number of nodes located in a given unit area) observed in human mobility

can be modeled by a Power Law. We then propose the Scale-Free Stochastic Mobility

(SFSM), a model to describe analytically the heavy tail behavior exhibited by spatial node

density and mobility degree (number of cells visited by a mobile node). We verify that

the proposed model closely approximates empirical spatial density distributions resulting
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from real mobility records (e.g., GPS coordinates traces and/or records). As an example

application, we use SFSM to build a waypoint-based mobility regime, named Scale-Free

Mobility Regime (SFMR), that is capable of generating mobility traces whose spatial node

density distributions closely resemble the ones measured in real human mobility scenarios

with the advantage of not requiring to extract model parameters from empirical datasets.

We use our mobility regime to simulate node mobility in ad hoc network scenarios and

show that the resulting average spatial node density closely resembles spatial density be-

havior observed in real mobility traces.

The main contributions of this part of the work includes:

• The proposal of a power-law based analytical model2 used to build a waypoint

mobility regime that can be used when developing and evaluating ITS protocols and

applications. The proposed mobility regime is capable of generating mobility traces

whose spatial node density and mobility degree distributions closely approximate

the ones measured in real human mobility scenarios.

• An important feature of the proposed mobility regime is the fact that its parameters

do not need to be extracted from real traces. To the best of our knowledge, our

work is the first to explore the viability of using an analytical model to generate

realistic mobility regimes whose parameters need not be extracted from traces. In

fact, the model parameters can be set so that synthetic traces generated by it are able

to mimic a variety of mobility scenarios in terms of number of clusters, their size,

as well as the nodes’ mobility degree. The ability of the model to generate syn-

thetic mobility traces for scenarios motivated by ITS applications is demonstrated

in Chapter 2.

• We also evaluate our mobility regime in terms of how accurately it reproduces

user mobility characteristics, i.e., spatial density and mobility degree. We conduct

a comparative study using four well-known mobility regimes, namely: Random

Waypoint mobility (RWP), Natural [Borrel et al. 2005], Clustered Mobility Model

(CMM) [Lim et al. 2006], and Self-similar Least Action Walk (SLAW) [Lee et al.

2009]. Our results show that our mobility regime is the one that most closely ap-

proximates metrics collected from simulations carried by the use of real mobility

traces.

• Additionally, we expand our study of node mobility degree behavior and show that,

2This analytical model was published on IEEE Transactions on Intelligent Transportation Systems [Fer-
reira et al. 2018].
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similar to a campus scenario, mobility degree in a vehicular scenario also exhibits

heavy tail behavior, i.e., follows a Power Law.

• Our proposed mobility model considers key features of human and vehicular mo-

bility such as node clustering and node mobility degree, which have been shown

to significantly impact performance of mobile networks and their protocols [Mota

et al. 2014,Song et al. 2010a]. We conduct a comparative study of the proposed mo-

bility regime when evaluating network routing and show that routing exhibits com-

parable performance under our mobility regime when compared to the real trace.

We also show that our model’s fidelity to the real trace is considerably higher when

compared to existing mobility regimes (i.e., RWP, Natural [Borrel et al. 2005],

CMM [Lim et al. 2006], and SLAW [Lee et al. 2009]).

1.2 Identifying User Communities Based on Geographical Preferences and Its Ap-
plications to Urban and Environmental Planning

Motivated by the findings identified in human mobility and modeled by the Scale-

Free Stochastic Mobility analytical model presented in Chapter 2, we begin Chapter 3

by studying the behavior and correlations among users as members of a common group.

We consider a community detection problem in a social network, over a diverse set of

scenarios. In a city, users (people or vehicles) can belong to several social groups (or

communities), in which members of the same community have stronger and denser social

connections than users from different communities. For instance, in social networks,

communities correspond to group of friends who attend the same school, or who come

from the same hometown [McAuley and Leskovec 2012].

Thus, we start by studying user mobility characteristics - including time spent in

a given locale, average time between movements, or pause time, and average mobility

speed. Such features are usually available from user mobility records such as GPS traces

and Wi-Fi access point association records. Then, we propose a user community identifi-

cation approach based on user mobility characteristics. The proposed methodology uses

clustering techniques to identify user communities based on similar mobility character-

istics extracted from real mobility traces. We investigate different clustering algorithms,

each representing four main categories of cluster classifiers proposed in the literature [Jain

et al. 1999,Cebeci and Yildiz 2015,Hasnat et al. 2015], namely: Exclusive-, Overlapping-

, Hierarchical-, and Probabilistic Clustering. Additionally, we use Principal Component

Analysis (PCA) and index metrics, as well as spatio-temporal information from real mo-

bility traces to evaluate the performance of the different clustering techniques.
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Moving forward towards human mobility-based community detection, we take advan-

tage of other mathematical and computing tools to improve the extraction of community

structures. As computational resources become more widely available through cloud- and

edge computing services, machine learning techniques, such as neural networks (NNs),

which not too long ago were considered totally prohibitive in terms of their computational

demands, have now become mainstream tools to handle the enormous amounts of data

being generated by sensing devices embedded mostly everywhere. A special category of

NNs named Deep Autoencoders have been applied in a variety of domains, ranging from

data augmentation, de-noising, activity and speech recognition, computer vision, to name

a few [Liu et al. 2016].

In this way, in Chapter 4, we explore deep autoencoder architectures applied to learn-

ing user geographical permanence patterns in a variety of urban scenarios. Our main goal

is to be able to perform automatic feature extraction among users and identify user com-

munities based on their geographical preference similarities. To this end, we improve the

former community methodology by introducing a novel deep autoencoder framework. We

use a diverse urban mobility datasets to validate and evaluate our framework. Our exper-

iments show that the proposed deep autoencoder increases contact times between users

belonging to the same community by up to 80% when compared to the average contact

time when not considering community structures and by up to 150% when compared to

user communities extracted from raw datasets, i.e., without running data through the au-

toencoder. Moreover, our approach also increases contact time between members of the

same community from 10% up to 125%, when compared to an alternate community ex-

traction approach that uses Principal Component Analysis [Bishop and Nasrabadi 2007]

instead.

Overall, the main contributions of this part of the work includes:

• A methodology3 for user community identification that relies solely on features

extracted from real human and/or vehicular mobility traces (e.g, obtained through

GPS or Wi-Fi technology), which eliminates the dependence on information often

difficult or expensive to obtain, such as data from telecommunication providers and

online social networks.

• A comparative performance study of four different categories of clustering algo-

rithms for user community identification using real mobility traces.

3A preliminary version of this methodology was published on Workshop de redes P2P, dinâmicas, so-
ciais e orientadas a conteúdo (WP2P+) [Ferreira et al. 2016]. In addition, a more complete version was
submitted to the IEEE Transactions on Intelligent Transportation Systems [Ferreira et al. 2019c].
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• Based on the user communities identified, extraction of common features within

communities, e.g., user geographical preference that can be leveraged by Smart

City services and applications, e.g., intelligent transit.

• A validation methodology based on novel image-based similarity metrics. the pro-

posed metrics allow to quantitatively assess the quality of the identified communi-

ties.

• We develop a Deep autoencoder Neural Network based approach4 to perform auto-

matic feature extraction in order to characterize user mobility in a variety of urban

mobility scenarios. We use both GPS and WLAN traces in different urban settings

(such as downtown areas and an University campus) that incorporate a variety of

modes of transportation, including private vehicles, buses, taxis, pedestrians, and

bikes.

• We demonstrate that our approach to automatically extract user mobility features

from mobility traces can be used as input to clustering algorithms for constructing

communities that group users with similar spatial and temporal mobility patterns.

• We show quantitative evidence that dimensionality reduction methods, when ap-

plied to mobility data before clustering, dramatically increases the quality of the

community structures identified. We discuss which of such methods perform better

and why.

• We create different autoencoder models, including fully-connected and convolu-

tional architectures for processing mobility data ahead of clustering. We show that

they are able to achieve better performance than those based on PCA according to

a number of metrics.

• We also compare the effectiveness of the different autoencoder architectures in find-

ing user spatial and temporal similarities, as well as discussing their computational

cost.

• Finally, we discuss the impact of different autoencoder architectures and parameters

on the performance of our automatic feature extraction framework.
4This proposal was submitted to a Special Issue on Deep Learning For Spatial Algorithms and Systems

on the ACM Transactions on Spatial Algorithms and Systems journal [Ferreira et al. 2019b].
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1.3 Routing Protocol and Data Dissemination for Opportunistic Networking

Thanks to the penetration of smartphones and their sensors in everyday life, mobile

communication technologies are no longer simply a means to connect a mobile device

to the network infrastructure. The convenient short range communication functions in-

tegrated in smart devices (e.g. Bluetooth and Wi-Fi) have given birth to some emerging

applications such as Intelligent Transportation Systems, recommender systems, mobile

data offloading, device to device communication, vehicular ad hoc networking, internet

of things among others. Application-oriented paradigms are also emerging such as people

centric networking, that puts people in the center, as the network is built with the users’

devices. In this paradigm billions of users’ mobile devices can be used for location-aware

data collection, instrumenting the real world and generating observations – crowdsensing

– and also to offer cloud computing services.

In such scenarios, usually the environment is saturated with mobile devices, that can

self-organize into networks for local communication amongst themselves. These net-

works are generally partitioned in disconnected islands, which can be connected by in-

frastructure network such as Wi-Fi or cellular networking, if they exist. However, even if

such infrastructure exists the cost and energy consumption can be significant. Therefore,

due to the pervasive nature of such environments, opportunistic networks emerge as a

means to provide or extend communication.

In the previous chapters we show that the community structure from real human mo-

bility was successfully extracted. One natural step forward should be to take advantage of

this knowledge into making more educated decisions on how, when and to whom forward

incoming data to. There is a great study opportunity in defining a function or a set of utility

functions that compute the probability of forwarding a given message, based on the com-

munity structure and its relationships of the communicating counterparts. Thus, our ulti-

mate goal is to develop and validate more efficient forwarding protocols, based on accu-

rate estimation of the underlying social structure of the mobile networking nodes. Chap-

ter 5 presents the proposed Deep AutoenCoder Community-based Opportunistic Routing

protocol (DACCOR) for data forwarding in opportunistic networks. DACCOR takes into

account the user mobility feature extraction and the community detection method pre-

sented in the previous chapters based on user geographical preference extraction using

deep learning. The proposed DACCOR forwarding scheme uses community information

to make forwarding decisions between members of different communities, and the com-

puted user relationship metric (i.e., called SSIM metric) to make the forwarding decision

within the community.
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The main contributions of this part of the work includes:

• The introduction of an user mobility feature extraction method and then present a

novel community detection method, based on user geographical preference extrac-

tion using deep learning.

• We discuss the user relationship metric used to identify similarities between mem-

bers of a community and how it can be calculated.

• We propose a Deep AutoenCoder Community-based Opportunistic Routing proto-

col (DACCOR) 5 for data forwarding in opportunistic networks.

• We show the effectiveness of the proposed opportunistic protocol through extensive

experimentation using one synthetic and two real mobility records representing di-

verse urban mobility scenarios.

• We show the improvements in performance when using DACCOR against other

forwarding mechanisms, for several networking metrics, and under different net-

work loads. Results show that DACCOR is able to outperform the other protocols,

and is able to deliver more, faster, and using less networking resources (e.g., re-

sources such as network bandwidth and battery power). In other words, by using

less bandwidth and less radio, DACCOR is able to dramatically decrease energy

consumption, optimizing battery life.

1.4 Publications during the doctoral program

The following papers were produced during the doctoral program at UNIRIO:

• FERREIRA, DANIELLE L.; NUNES, BRUNO A. A.; OBRACZKA, KATIA. Scale-

Free Properties of Human Mobility and Applications to Intelligent Transportation

Systems. IEEE Transactions on Intelligent Transportation Systems, 19(11): 3736-

3748, 2018.

• FERREIRA, DANIELLE L.; NUNES, BRUNO A. A.; and CAMPOS, C. A. V.,

Uma metodologia de identificação de estruturas sociais em registros reais de mobi-

lidade humana e veicular. WORKSHOP DE REDES P2P, DINÂMICAS, SOCI-

AIS E ORIENTADAS A CONTEÚDO (WP2P+), XXXIV Simpósio Brasileiro de

Redes de Computadores, 2016.
5This work will be submitted to the 16th IEEE International Conference on Mobile Ad-Hoc and Smart

Systems [Ferreira et al. 2019a].
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• FERREIRA, DANIELLE L.; NUNES, BRUNO A. A.; VIEIRA, CAMPOS, C. A.

V.; OBRACZKA, KATIA . Using Real Mobility Records for User Community Iden-

tification in Smart Cities, IEEE Transactions on Intelligent Transportation Systems,

under review, 2019.

• FERREIRA, DANIELLE L.; NUNES, BRUNO A. A.; CAMPOS, C. A. V.; OBRACZKA,

KATIA, A Deep Learning Approach for Identifying User Communities Based on

Geographical Preferences and Its Applications to Urban and Environmental Plan-

ning, Special Issue on Deep Learning For Spatial Algorithms and Systems, ACM

Transactions on Spatial Algorithms and Systems, under review, 2019.

• FERREIRA, DANIELLE L.; DE SOUZA CLAUDIO; CAMPOS, C. A. V.; OBRACZKA,

KATIA, Deep autoencoder based community detection and its application to data

forwarding in opportunistic networks. IEEE MASS 2019: The 16th IEEE Interna-

tional Conference on Mobile Ad-Hoc and Smart Systems, under work, 2019.

• DE SOUZA, CLÁUDIO; FERREIRA, DANIELLE L.; CAMPOS, C. A. V.; DE

OLIVEIRA, ANTONIO; CARDOSO, KLEBER; and MOREIRA, WALDIR, Em-

ploying Social Cooperation to Improve Data Discovery and Retrieval in Content-

Centric Delay-Tolerant Networks. IEEE Access, under review, 2019.

• BARROS, R.; MOURA, H.; FERREIRA, D. L.; NUNES, B. A. A.; Lucena, S.;

CAMPOS, C. A. V., Um Framework para Experimentos Realísticos em Redes Sem

Fio Definidas por Software. In: XXXVI Simpósio Brasileiro de Telecomunicações

e Processamento de Sinais, 2018, Campina Grande. XXXVI Simpósio Brasileiro

de Telecomunicações e Processamento de Sinais, 2018.

• Souza, C. D. ; Ferreira, D. L. ; CAMPOS, C. A. V. DIRESC: Um protocolo para

descoberta e recuperação de dados em redes centradas em conteúdo e tolerantes

a atraso. In: 35ª Simpósio Brasileiro de Redes de Computadores e Sistemas Dis-

tribuídos (SBRC), 2017, Belém. Anais do 35ª Simpósio Brasileiro de Redes de

Computadores e Sistemas Distribuídos (SBRC), 2017.

• Souza, C. D. ; Ferreira, D. L. ; CAMPOS, C. A. V. . A protocol for data discov-

ery and retrieval in content-centric and delay-tolerant networks. In: IEEE 86th

Vehicular Technology Conference, 2017, Toronto. Anais do IEEE 86th Vehicular

Technology Conference, 2017.
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2. Scale-Free Properties of Human Mobility and Applications
to Intelligent Transportation Systems

Characterizing and modeling node mobility is of critical importance in building in-

telligent transportation systems and their applications. In this chapter, we discuss the

scale-free properties of some important human mobility characteristics, namely spatial

node density and mobility degree, and show that they exhibit behavior that can be de-

scribed by a power-law. Based on their power law characteristics, we derive analytical

models for the spatial node density and mobility degree and showed that the data gener-

ated by the proposed analytical models closely approach empirical data extracted from the

real mobility traces. Another contribution of our work is to use the proposed analytical

models to build a synthetic mobility regime that is suitable for simulations of intelligent

transportation systems. Finally, through network simulations, we show that ad-hoc net-

work routing behavior under our mobility regime closely approximates routing behavior

when the corresponding real trace is used.

2.1 Introduction

As computing and sensing devices become more prevalent and embedded in every-

thing around us and wireless communication more ubiquitous, they have enabled a variety

of emerging applications such as Intelligent Transportation Systems, or ITS. According

to the European Union’s Directive 2010/40/EU [201 40oj], ITS embodies services that

employ “information and communication technologies in the field of road transport, in-

cluding infrastructure, vehicles and users, and in traffic management and mobility man-

agement, as well as for interfaces with other modes of transport”. It also includes the

use of information and communication technologies to improve public- and mass transit

systems efficiency and safety.

Understanding how people move in different environments and at different time scales
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is thus critical to enable ITS applications and services. The need for a deeper under-

standing of user mobility in wireless network environments has been well recognized

(e.g., [Conti and Giordano 2014]) and has captured considerable attention from the net-

working community. CRAWDAD [CRAWDAD 2015] is a notable example of an initia-

tive funded by the US’ National Science Foundation (NSF) whose goal is to make real

traces of network user activity publicly available, including mobility records. However,

even with such efforts, availability of real human and vehicular mobility traces is still quite

limited and so is availability of real testbeds. As an alternative, a number of research ef-

forts focus on extracting features from real mobility records (e.g., mobility traces) to build

realistic mobility generators that will drive simulation platforms.

One of the main challenges in constructing mobility generators is developing models

that can capture the complexity of human and vehicular mobility, and their key features,

in real-world settings [Karamshuk et al. 2011, Mota et al. 2014, Lin and Hsu 2014].

Two such key features are clustering, which can be defined as the tendency of people

to agglomerate [Newman 2004] and geographical preference, which refers to people’s

preferences for particular locales. The work in [Nunes and Obraczka 2011] proposes

spatial node density, defined as the number of users located in a given unit area, as a way

to measure the degree of clustering associated with a given user population. Spatial node

density has considerable impact on fundamental network properties such as connectivity

and capacity, which in turn have direct influence on core network functions like medium

access and routing. In work [Nunes and Obraczka 2011] the authors showed that users

tend to congregate and form clusters, rather than being homogeneously distributed over

an area.

To date, only a few synthetic mobility regimes have attempted to model spatial node

density. Some examples include [Bettstetter et al. 2003] and [Hyytia et al. 2006,Mitsche

et al. 2014], which propose analytical models to study spatial node density under Random

Waypoint (RWP) mobility. In [Nunes and Obraczka 2014], spatial node density has been

modeled using first order ordinary differential equations (ODEs) whose parameters are

extracted from real mobility traces. Using real traces to set values of model parameters is

not ideal especially because of limited trace availability which may yield parameters that

are specific to certain scenarios.

Song at al. [Song et al. 2010a] investigated users’ geographical preferences and found

that the number of distinct regions visited by users follows scaling laws. In addition, they

observed that the power law parameter is related to the probability users visit new regions

over time. Their study used data collected from cellular networks, which, due to its low

resolution, may not provide accurate representation of user behavior [Hess et al. 2015b].
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In this chapter we show empirically, using real mobility traces collected in a variety

of scenarios, that spatial node density and node mobility degree (i.e., the number of dis-

tinct cells visited by an individual node) observed in human mobility can be modelled by

a power law. We then proposed a model to analytically describe the heavy-tail behavior

exhibited by spatial node density and mobility degree resulting from user mobility, and

confirmed that the proposed model closely approximates empirical spatial density distri-

butions found in real mobility traces. As an example application of this analytical model,

we used it to derive a mobility regime and showed how the proposed mobility regime

closely resembles the real trace and the analytical model.

2.2 Mobility Traces

In our study, we use real traces collected in scenarios that are quite diverse, namely:

a public park in the city of Rio de Janeiro, Brazil, an university campus in the USA,

and a vehicular trace of taxis moving around the city of San Francisco, California, USA.

Two of the traces were collected using GPS devices, while the third records Wireless

LAN (WLAN) users as they associate and disassociate with the WLAN’s Access Points

(APs). These traces are summarized in terms of number of users, trace duration, and data

sampling period in Table 2.1.

Trace # users # Cells Duration Data Sampling
Quinta [Campos et al. 2009] (GPS) 97 16 900s 1s
SF Taxis [Piorkowski et al. 2009] (GPS) 483 1600 24 days 1 to 3 mins
Dartmouth [Kotz et al. 2009] (WLAN) 6524 1776 60 days A/D events

Table 2.1: Summary of user mobility traces considered in our study.

In Table 2.1, Quinta refers to the “Quinta da Boa Vista Park” trace [Campos et al.

2009] which is a GPS trace collected as people walked through the Quinta da Boa Vista

public park in the city of Rio de Janeiro, Brazil. SF Taxis [Piorkowski et al. 2009]

refers to the vehicular mobility trace collected in the city of San Francisco, California,

USA, where a fleet of approximately 500 taxi cabs was equipped with GPS trackers and

had their positions logged for a period of 24 days. The Dartmouth [Kotz et al. 2009]

trace logs user access to Dartmouth College’s WLAN, in the form of AP association and

disassociation events (denoted as “A/D events” in Table 2.1’s Data Sampling column).

While the original trace spans 5 years, we only used about 60 days of activity in which

we identified higher activity (in terms of number of users and active APs).
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Cells

The area in which mobile users move is divided into equal sized squares, or cells.

When considering infrastructure-based wireless LAN (WLAN) traces, such as the Dart-

mouth trace, cells are defined by the range of the APs. Thus, every cell corresponds to an

AP; as a result, for the Dartmouth trace, the number of cells is equal to the number of APs.

We employ similar criteria for the GPS traces, i.e., the Quinta and SF Taxi traces and we

used cell sizes that correspond to AP average transmission range. In our experiments we

used 140m-by-140m cells. To validate our choice of cell size, we ran experiments vary-

ing the cell dimension a few tens of meters up and down [Nunes and Obraczka 2014]. We

observe no significant impact on the results when considering cell dimensions that are not

too small or too big.

Node Spatial Density and Mobility Degree

We define node spatial density as the number of nodes located in a given cell. We

compute node spatial densities from the traces based on the trace’s cell size and sampling

period. We define also:

• node spatial density distribution as the ratio of cells containing on average ≥ x
nodes over time, while

• mobility degree distribution is the ratio of nodes that visit a number ≥ n of cells.

Defining an Intensity Map

We extract the quantity we call the intensity of the cell as the number of mobile nodes

that visits a cell during a given time interval. For a total number of cells N, each cell

i ∈ {1..N} dividing the mobility area, is assigned an intensity µi,Tt at interval Tt. The

Intensity Map (IM), for t ∈ {0,1,2, ...} is a N-dimensional vector, where each element in

this vector has a value {µi,Tt ∈R | µi,Tt ≥ 0} that indicates how intense the activity in cell

i is. The IM for interval Tt represents the spatial node density for that interval of time.

Similarly, we extract an User Intensity Map (UIM) composed of L elements, where

each element has a value {µl,Tt ∈R | µl,Tt ≥ 0} that indicates how mobile a node l∈ {1..L}
is. In other words, µl,Tt provides the number of distinct cells visited by node l during Tt.
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Node Speed and Pause Time

The distributions for node speed and pause times are also computed from the traces

and are based on the trace’s sampling period. In the Quinta trace for example, where the

sampling period is T = 1 seconds, we build histograms for speed and pause time, which

provide the relative frequency at which each value occurs. We compute node speed as
d
∆t where d is the distance traveled between two consecutive entries in the GPS trace

at times t1 and t2 and ∆t = t2− t1. We compute pause time for the Quinta trace as

we will use for the experiments reported in Section 2.7.2. Pause time is calculated as

P=∆t, if d< threshold, or zero otherwise. We use threshold= 0.5m since, in the Quinta

trace, data is sampled every 1sec and pedestrians do not typically move much in 1sec.

Furthermore, the Quinta trace was post-processed to account for possible GPS errors, as

indicated in [Campos et al. 2009].

2.3 Power Law and Human Mobility

As discussed previously, spatial node density and mobility degree have considerable

impact on fundamental network properties such as connectivity and capacity, which in

turn have direct influence on core network functions like medium access and routing. In

this section, we show that both spatial node density and mobility degree resulting from

human movement in different scenarios exhibits heavy tail behavior, i.e., follows a Power

Law. Power law has been used to describe a number of phenomena in communication net-

works, such as, node inter-contact times [Karagiannis T 2010], human movement [Song

et al. 2010a, Noulas et al. 2012], and Internet measurements [Mahanti et al. 2013], to

name a few.

Power laws are expressions of the form P(x) ∝ x−α, where α is a constant parameter

and x are the measurements of interest. Few physical phenomena follow a power law for

all values of x [Clauset et al. 2009]. Usually, only the tail of the distribution, i.e., starting

from a given minimum value, xmin, follows a power law. Thus, given a set of values

that correspond to the observed data and the hypothesis that the data was extracted from

a distribution that follows a power law, we want to verify if this hypothesis is plausible.

Fitting empirical data into a distribution that follows a power law is not trivial due to

issues such as: (1) fluctuations that occur in the tail of the distribution representing rare

events, and (2) difficulty in identifying the part of the distribution that actually follows the

power law, i.e., xmin.
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We fit the data from our mobility traces into a power law and compute its parameters

by following the statistical framework described in [Clauset et al. 2009]. We then apply

a goodness-of-fit test also from [Clauset et al. 2009], which generates a p value, used to

test whether a distribution follows or not a power law distribution. In other words, the test

checks if a distribution following a power law is a plausible fit for the empirical data. This

test computes the distance between the empirical data distribution and the hypothesis of

the model. This distance is computed through the statistical test of Kolmogorov-Smirnov

(KS), and is compared with the distance of measurements taken from a set of synthetic

data drawn from the same model. The value of p is defined as a fraction of the distance

of the synthetic data that is greater than the empirical distance.

In summary, if the computed p value is high (i.e., close to 1), then the differences

between the empirical data and the model can be attributed to statistical fluctuations. In

the case where p is closer to 0, the model is considered not to be a plausible fit. Following

the recommendation from [Clauset et al. 2009], we use p < 0.1 to reject the hypothesis

that the empirical data follows a power law.

2.3.1 Spatial Node Density

This section presents the hypothesis test that the spatial node density is well repre-

sented by a power law distribution. Figure 2.1 shows the cumulative distribution functions

(CDFs) of spatial node density for the Quinta (Figure 2.1(a)), Dartmouth (Figure 2.1(b)),

and the San Francisco cab traces (Figure 2.1(c)), along with the fitting of the data accord-

ing to a power law. For the sake of comparison, Figure 2.1 also plots the fitting of the

same data using the exponential and log-normal distributions, as suggested in [Clauset

et al. 2009]. This is done in order to ensure that not only a power law distribution is a

good fit for the data, but also provides better fit when compared to other distributions.

Additionally, the graphs in Figure 2.1 show the values for the parameters of the fitted

curves. It also shows the values of p for the power-law fit for all three traces studied. We

observe that p is well above the reference threshold of 0.1 used in [Clauset et al. 2009] for

all three traces, validating the hypothesis that the spatial node density distribution follows

a power law with parameters α and xmin approximately equal to 2.5 and 10−20% of the

upper density, respectively.

As pointed out in the previous section, the value xmin which determines where the

heavy tail behavior begins is sometimes imprecise. In our experiments we found that this

value ranges from 10% to 20% of the upper density (i.e., the maximum value of density

measured). These findings are consistent with the well known “80/20” rule [Newman
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2005].

Here, the exponent α represents the slope of the curve, and can be extracted from the

observed data by using the following formula [Clauset et al. 2009]:

α= 1+n[
n

∑
i=1

ln
xi
xmin

]−1 (2.1)

where xi are the measured values of x, and n is the number of samples above xmin.

The parameters of the exponential and log-normal distributions were extracted from

the data set by fitting the best curve that minimizes the distance to the real data, using

Matlab’s fitting toolbox. Table 2.2 compares the fitting errors between the different dis-

tributions (i.e., power law, exponential, and log normal) and the traces. The power law

distribution fitting yields errors at least 2 orders of magnitude smaller than the fittings

using the other distributions.
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(b) Spatial node density for Dartmouth Trace
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(c) Spatial node density for SF taxi trace

Figure 2.1: CDF of the spatial node density distribution for the Quinta, Dartmouth, and
San Francisco cab traces.
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2.3.2 Mobility Degree

Node mobility degree, or the number of different locations or cells that a node visits, is

another important factor in mobile networks. For example, in disruption-tolerant networks

(DTNs) or social networks, a node’s degree of mobility will directly affect the node’s node

ability to relay messages since a node that visits a greater number of locations would

potentially have more opportunities of contacts with other nodes. Thus, mobility degree

can be used to decide whether a node is a good candidate to act as a message relay and/or

how many copies of a message the node should carry.

By applying the same method used in Section 2.3.1, we show that the cumulative

distribution of the number of distinct locations visited by a node also presents a heavy tail

behavior, i.e., the hypothesis that node mobility degree follows a power law distribution

is also plausible.

Figure 2.2 shows the CDF of the distribution of the number of cells visited by users for

the Dartmouth (Figure 2.2(a)) and SF Taxi traces (Figure 2.2(b)), along with the fitting of

the data according to a power law (using the method described in [Clauset et al. 2009]),

exponential, and log-normal distributions 1. Here we can also observe that the curve

that approaches the real data the most is the power law fit, which attests to the fact that

most users tend to have low mobility or be stationary, while a small portion of users are

highly mobile and visit a large number of locations. Table 2.2 shows the mean square

error of each fit for the spatial node density metric, regarding Dartmouth and SF Taxi

traces. Similar to the spatial node density results, the power law distribution also shows

fitting errors for mobility degree at least 2 orders of magnitude smaller than the other

distributions for both Dartmouth ad SF Taxis traces, as can be observed in Table 2.3.

Distribution SF Taxis Quinta Dartmouth
(density) (density) (density)

Power Law 2.6306e-06 5.7428e-04 7.8624e-06
Exponential 0.0173 0.0390 0.00380
Log-normal 0.0154 0.0192 8.4840e-04

Table 2.2: Mean square error resulting from power-law, exponential, and log-normal fit-
ting of the traces’ spatial node density.

1Since nodes in the Quinta trace visit a relatively small number of locations, the trace does not exhibit
enough mobility to be statistically representative of node mobility degree. As such, we do not use the
Quinta trace in our mobility degree characterization.
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(a) Node mobility degree for Dartmouth trace
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Figure 2.2: CDF of the node mobility degree for the Dartmouth, and San Francisco cab
traces.

Distribution SF Taxis Dartmouth
(mob. degree) (mob. degree)

Power Law 6.0948e-05 5.8607e-05
Exponential 0.0025 0.0022
Log-normal 0.0461 0.0014

Table 2.3: Mean square error resulting from power-law, exponential, and log-normal fit-
ting of the traces’ node mobility degree.

2.4 Scale-Free Stochastic Model

This section presents an analytical model for the spatial node density and node mo-

bility degree, i.e., the number of cells visited by a mobile node. The proposed analytical

model, named Scale-Free Stochastic Mobility (SFSM), is based on spatial node density’s

and node mobility degree’s power-law behavior, as shown in Section 2.3. SFSM’s contri-

butions include the ability to: (1) express analytically these key features of human mobil-

ity which explains the formation and maintenance of clusters, and (2) generate mobility

regimes that follow the observed power-law behavior of user mobility in real scenarios

without the need to extract parameters from real traces. In Section 2.5, we exemplify

SFSM’s latter contribution by presenting an SFSM-based mobility regime.

2.4.1 Spatial Node Density as a Stochastic Process

Motivated by the empirical results presented in the previous section we now seek to

model the spatial node density by means of a stochastic process. To this end, we divide the

cells in groups such that cells with the same number of nodes belong to the same group.
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Then, we find the transition probabilities for a cell to migrate from its current group to

another, either denser or sparser, group. These transition probabilities allow us to derive

the node density distribution in the cells. In [Champernowne 1953], a similar model was

presented for modeling the income of people living in the UK in the early 50‘s.

We consider that the spatial node density distribution of countable groups of cells fol-

low a stochastic process, and the stochastic matrix remains constant over time. In such

context and provided certain specific conditions discussed below are satisfied, the distri-

bution will tend towards an equilibrium distribution dependent on the stochastic matrix

but not on the initial distribution. Table 2.4 summarizes SFSM’s notation.

Param. Description
Xr number of cells in each range Rr
Xs number of cells in each range Rs
prs(t) probability of cell in range Rr who shifts to range Rs
pru(t) ratio of cells in range Rr that jumps u ranges
b root of g(z)
N total number of cells
ymin lowest cell density
ys lower bound of the number of cells in range Rs
10h extent of each range
F(ys) distribution of the number of cells exceeding ys

Table 2.4: Summary of SFSM notation.

We assume that cell density, i.e. the number of mobile users populating a cell, is

divided into a number of proportionally distributed ranges. For example, we consider

ranges per time interval to be [1,2) nodes, [2,4) nodes, [4,8) nodes, [8,16) nodes, and so

forth.

We use smaller ranges for lower density values and larger ranges for higher density

values, due to the fact that higher densities do not occur as frequently. This is a reasonable

assumption since sparse cells occur in much greater numbers than dense cells, i.e. it is not

uncommon for a small subset of the cells to account for most of the nodes in the entire

network.

We then consider that the change in node density distribution in any individual cell in

a given interval depends on its state in the previous interval and on a random process. In

other words, we consider node density variation across these ranges as being a stochastic

process. In fact, as users move, there are always new users coming into some cell and

other users leaving. An acceptable assumption to make is that for each user leaving a

cell, there is a cell welcoming that user in the next instant of time, and vice-versa. This
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assumption will imply that cell density is approximately constant over time and that each

mobile node decides where and when to move. We also assume that the total number of

cells in the system does not change with time as the region under study remains fixed.

Under such assumptions, to describe the spatial node density distribution, we first

define Xr(0) as the number of cells in each range Rr, r= 0,1,2, ... at initial time T0, and a

series of matrices p
′
rs(t) as the probability of cells of Rr at time Tt who are shifted to range

Rs in the next interval time Tt+1. Then, the density distribution xr(t) will be generated

according to Equation (2.2).

Xs(t+1) =
∞
∑
r=0

Xr(t)p
′
rs(t) (2.2)

If we consider that the ranges are sorted by size, where the lowest cell density range

is R0, then we are able to define a new set of stochastic matrices

pru(t) = p
′
r,r+u(t) (2.3)

and rewriting Equation (2.2) as

Xs(t+1) =
s

∑
u=−∞Xs−u(t)ps−u,u(t) (2.4)

pru(t) carries the information on the ratio of cells in range Rr which jumps a number

u of ranges in Tt.

It is well known that dense locations tend to continuously attract other nodes keeping

its high density characteristics, and sparse cells tend to remain sparse [Barabási and Al-

bert 1999]. This assumption is also corroborated by our previous findings in [Nunes and

Obraczka 2011], where we showed that cell density does not change over time.

As such, the frequency distribution of pru(t) in u, is likely to be centered around

u= 0.

In practice, this implies that the probability of cells shifting upwards and downwards

across density ranges changes very little over time. We thus keep p ′r,r+u(t) = pru(t)

constant over time.

Given the discussion above, let us assume that, for all values of t and r, and for some
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fixed integer n, we have

p
′
r,r+u(t) = pr,u(t) = 0 if u > 1 or u <−n (2.5)

i.e., no cell can move upwards by more than one range or downwards by more than

n >= 1 ranges at a time.

p
′
r,r+u(t) = pr,u(t) = pu > 0 (2.6)

−n=< u=< 1 and u >−r

Equation (2.6) is our basic postulate, which follows from our findings from Section

2.3.1, that has tested the hypothesis that spatial node density follows a power law. What

Equation (2.6) tells us is that the probabilities of a cell shifting up and down along the

ranges of cell densities are distributed independently of the current cell density. This is

true despite the imposed threshold forbidding that a cell descends below a given number

of ranking positions and the frequency distribution of prs(t) assumption discussed above.

This will lead to a density distribution which obeys a Pareto’s law, at least asymptotically,

for high cell density values.

We also need to assume that for every value of r and t

∞
∑
s=0

p ′rs(t) =
∞
∑
u=−r

pru(t) = 1 (2.7)

which, according to (2.6), also implies

1

∑
u=−n

pu = 1 (2.8)

The assumption described by Equation (2.7) tells us that cell density preserve their

identity over time, as described in Section 2.4.1 above.

We also need to make sure that the cell density process is not dissipative. In other

words, cell density does not increase indefinitely without reaching an equilibrium distri-

bution.

We can then denote
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g(z)≡
1

∑
u=−n

puz
1−u−z (2.9)

Thus, our stability assumption is as follows:

g
′
(1)≡−

1

∑
u=−n

upu is positive. (2.10)

This means that for all cells, initially in any one of ranges Rn,Rn+1,Rn+2..., the aver-

age number of ranges shifted during the next time is negative.

Now we determine the equilibrium distribution corresponding to any matrix p
′
r,r+u(t)=

pr,u(t) according to our assumptions. Owing to the uniqueness theorem mentioned above

in Section 2.4.1, it will be sufficient to find any distribution which remains exactly un-

changed under the action of the matrix p ′rs(t) over time. Such distribution, when found,

must be (apart from an arbitrary multiplying constant) the unique distribution which will

be approached by all distributions under the repeated action of the matrix multiplier p ′rs(t)

over time.

If Xs is the desired equilibrium distribution, we need by (2.3), (2.5), (2.6)

Xs =
1

∑
u=−n

puXs−u for all s > 0 (2.11)

and

X0 =
0

∑
u=−n

quX−u where qu =
u

∑
v=−n

pr (2.12)

We need only satisfy (2.11), since (2.11), (2.5), (2.6) and (2.7) ensure the satisfaction

of (2.12) as well.

Now a solution of (2.11) is

Xs = b
s (2.13)

where b is the real positive root other than unity of the equation
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g(z)≡
1

∑
u=−n

puz
1−u−z= 0 (2.14)

where g(z) was already defined in (2.9).

Descartes’ rule of signs establishes that (2.14) has no more than two real positive

roots: since unity is one root, and g(0) = p0 > 0, and g ′(1) > 0 by (2.10), the other real

positive root must satisfy

0 < b < 1 (2.15)

Hence the solution in (2.13) implies a total number of cells by

N ′ =
1

1−b
(2.16)

and, to arrange for any other total number N, we need merely modify (2.13) to the

form

Xs =N(1−b)bs (2.17)

We can now assume that the proportionate extent of each range is 10h, and that the

lowest cell density is ymin, then Xs is the number of cells in the range Rs whose lower

bound is given by

ys = 10
shymin from where log10ys = sh+ log10ymin (2.18)

By summing a geometrical progression, using (2.17), we now find that in the equilib-

rium distribution of the number of cells exceeding ys is given by

F(ys) =N.b
s from where log10F(ys) = log10N+ s.log10b (2.19)

Now put

α= log10b
−1/h and γ= log10N+αlog10ymin (2.20)
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Then it follows from (2.18) and (2.19) that

log10F(ys) = γ−αlog10ys (2.21)

This means that for y = y0,y1,y2..., the logarithm of the number of cells exceeding

y is a linear function of y. This states Pareto’s law in its exact form [Clauset et al. 2009].

Thus, if all ranges are equal proportionate extent, our simplifying assumptions ensure

that any spatial node density initial distribution will, with time, approach the exact Pareto

distribution given by Equations (2.20) and (2.21).

We validate the proposed SFSM model for spatial node density empirically by com-

paring it with mobility recorded in the Quinta, Dartmouth, and SF Taxis traces (which are

summarized in Section 2.2). The graphs in Figure 2.3 show, for each trace, the probabil-

ity of finding a cell that was visited by y or more mobile users. They were computed by

extracting the number of users visiting each cell during a given interval, i.e. [800s,900s]

for the Quinta trace, and a random non-interrupted 24 hour interval for the Dartmouth and

San Francisco traces. These intervals were chosen based on results presented in [Nunes

and Obraczka 2011], which show that node density distribution does not change over

time.

Figure 2.3 also shows the graphs obtained by running SFSM for each trace. The

coefficients of the stochastic matrix (i.e., the probability pu of a cell changing u ranges

between two consecutive time intervals) used to parameterize SFSM were extracted from

the traces so that we could compare to the empirical density and validate our model.

The SFSM curves start at xmin = 4,24,247 for Quinta, Dartmouth and SF Taxis traces,

respectively, and are derived in Section 2.3 and shown in Figure 2.1. To quantify SFSM’s

fidelity to the empirical spatial node density for values of density greater than a ymin,

we define the modeling error as a perceptual difference between the distribution obtained

from the real traces and the one computed from SFSM. In other words, the modeling

error is calculated as the absolute difference between SFSM-derived spatial node density

distribution and the distribution computed for the real trace, taken at each point in the

x-axis in the tail of the distribution (i.e., (> ymin), divided by the corresponding value

from the real trace density distribution. We computed the mean error and confidence

intervals with a 95% confidence level for the three traces studied. We average the errors

computed for all points in the horizontal axis for values > ymin. The mean error and

confidence interval for the Quinta trace shown in Figure 2.3(a) are 0.16%[0.15%,0.19%],

respectively. Figure 2.3(b) shows the Dartmouth trace results, for which the mean error
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and confidence interval are 1.17%[1.38%,0.96%], respectively, and Figure 2.3(c) shows

results for the San Francisco Taxi dataset with mean error and confidence interval of

0.43%[0.47%,0.38%], respectively.
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Figure 2.3: Spatial node density distribution for the Quinta, Dartmouth, and SF Taxi traces
compared against node density distributions generated by SFSM.

2.4.2 Mobility Degree as a Stochastic Process

Following the observation that, similarly to the spatial node density, mobility degree

also exhibits power law behavior (see Section 2.3), we follow the same methodology

used in Section 2.4.1 to derive a stochastic model for user mobility degree.

Recall that mobility degree is defined as the number of cells visited by a mobile user

over a given period of time. As such, a user with low mobility visits a small number

of cells, while a very mobile user visits a larger number of cells. In order to describe

the mobility degree distribution, we define Θd(0), as the number Θd(0) of users in each

mobility degree range Dd, d = 1,2, ... at the initial time T0, and a series of matrices

p
′
dv(t) as the probability of users in the range Dd at time Tt who shifted to range Dv

in the following interval time Tt+1. Then, the mobility degree distribution θd(t) will be

generated according to
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Θv(t+1) =
∞
∑
d=0

Θd(t)p
′
dv(t) (2.22)

Just as we did before, consider that the ranges are ordered by their size, where the

lowest range of number of cells visited per user isC0, then we can define a set of stochastic

matrices such as

pdf(t) = p
′
d,d+f(t) (2.23)

where pdf(t) indicates the ratio of users in Dd who jumps over a number f of ranges

in Tt. Then, Equation (2.22) becomes:

Θv(t+1) =
v

∑
f=−∞Θv−f(t)pv−f,f(t) (2.24)

Following analogous derivations as in Section 2.4.1, we are then able to find the equi-

librium distribution F(ωv) of the number of users whose number of visited cells exceeds

ωv.

We validate the proposed SFSM model for node degree distribution empirically by

comparing it with mobility recorded in the Dartmouth, and SF Taxis traces. Figure 2.4

shows the probability of a node visiting n or more cells in a single trip, and by running

SFSM for each trace. They were computed by counting the number of cells each up-

ropmted user visits during the trace duration. The coefficients of the stochastic matrix

(i.e., the probability pf of a user changing f ranges between two consecutive time inter-

vals) used to parameterize SFSM were extracted from the traces so that we could compare

to the empirical density and validate our model.

2.5 Generating Scale-Free Mobility Regimes

Intelligent Transportation Systems have leveraged research and technology motivated

by vehicular ad-hoc networks, or VANETs. In fact, many ITS services rely on the pro-

vision of an effective communication platform between vehicles, as well as between ve-

hicles and road infrastructure (e.g., road-side units, sensors, etc). Also, communicating

devices, such as laptops, smart phones, and even sensors now often carried by drivers and

passengers can also be used to track vehicle mobility which is influenced by how humans
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Figure 2.4: Node mobility degree distribution for Dartmouth and SF Taxi traces compared
against mobility degree distributions generated by SFSM.

move, their habits, social links, and locality [Hossmann et al. 2011]. It is known that

in the real world, nodes present clustering behavior and community structure [Newman

2004], with islands of connectivity and paths between clusters. For example, in VANETs,

vehicles tend to group around traffic lights, junctions, toll, hazards, etc. The same behav-

ior is also found in human mobility, where they tend to group in popular places, such as

classrooms or cafeterias on campus, popular events, cafes, restaurants, etc.

As it is usually expensive and often logistically difficult to deploy and test ITS solu-

tions in real world environments, network researchers and practitioners rely on simulation

tools in order to develop and evaluate ITS services. Moreover, since we would like to be

able to simulate realistic scenarios, mobility regimes that can closely represent real-world

mobility are imperative in assessing the true impact and performance of ITS applications

and protocols. In this section, we introduce the Scale-Free Mobility Regime (SFMR) that

considers the previously discussed stochastic properties of node mobility, namely spatial

node density and mobility degree, as well as nodes’ geographical preferences. SFMR

generates mobility regimes that reflect realistic human mobility behavior as character-

ized in Section 2.3. Next, we show how to use the Scale-Free Stochastic Model (SFSM)

proposed in Section 2.4 to set SFMR’s parameters.

In a nutshell, using SFMR to generate realistic mobility regimes works as follows:

Before the simulation begins, cells with high node density (or clusters) are defined by

specifying that the spatial node density in these cells is greater than a given threshold

ymin; in other words, for these high density regions, we use the tail of the spatial density

distribution to derive the probability that a node will choose a cell in the region. In the case

of cells where density is below the ymin threshold, we apply an uniform spatial density

distribution, for simplicity. As shown in Section 2.7, our results indicate that uniform

27



spatial node density is a reasonable approximation for low density regions. As part of

our ongoing work, we have been studying more closely the impact of different known

distributions to model cell density bellow ymin.

As we have previously discussed, one of SFMR’s benefits is the ability to generate

mobility regimes that result in spatial density distributions similar to the ones found in

real mobile applications (as exemplified by the traces presented in Section 2.2) without the

need to extract parameters from mobility traces. Below we provide a detailed description

of SFMR, including how to set its parameters.

SFMR has two phases, namely initialization and movement. During the initialization

phase (shown in Algorithm 1), nodes can be distributed in the geographic area according

to an arbitrary‘ distribution. In the movement phase, for simplicity, we use a waypoint-

based mobility regime, contending that simplicity is critical for wide adoption of any mo-

bility regime. As such, the steps involved in the movement phase, as shown in Algorithm

2.

During initialization, described in Algorithm 1, some node l may decide with prob-

ability 1−P(ηl) if it will remain in the same cell, or if it will choose a destination with

another cell with probability P(ηl). The number of different cells ηl visited by node l is

defined a priori by sampling from the computed distribution F(ωv). F(ωv) can be ob-

tained as described in Section 2.4.2. The probability P(ηl) that a user l will leave a cell

is computed in Equation 2.25, and this value of P(ηl) is kept constant for every node l

during the simulation.

P(ηl) =
ηl

∑mηm
∀m ∈ {1..L} (2.25)

When the simulation is in the movement phase, nodes behave as described in Al-

gorithm 2. For every node, using a probability distribution given by F(ωv), the node

decides with probability P(ηl) if it is going to move to another cell, as mentioned ear-

lier. If the node decides to move, it chooses its next cell using a probability distribution

given by F(ys). A (x,y) destination is picked randomly inside the chosen cell. Then the

node moves to that destination at a randomly chosen speed, uniformly distributed between

[Vmin,Vmax]. When the node reaches its destination it pauses for some time, and repeats.

We discuss how the values for Vmin, Vmax, and pause time are chosen below.

The decision of which cell is going to be the next destination is made with probability

P(µi). We assume that the probability P(µi) that a node would choose cell i as a next
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destination depends on the cell intensity µi, that can be obtained by sampling from the

computed distribution F(ys), of every cell i. The probability P(µi) is computed as in

Equation 2.26, and this value of P(µi) (i.e., the probability that cell i is chosen, given its

intensity µi) is kept constant for each cell i during the simulation. Table 2.5 summarizes

SFMR’s notation.

Param. Description
Fys Distribution of the numb. of cells exceeding ys
Fωv Distribution of the numb. of cells visited by a user that

exceedsωv
νl Numb of different cells visited by node l
µi Numb of different cells visited by node l
Pνl Prob. that node l chooses to leave a cell
Pµi Prob. that a node chooses cell i as destination
ymin Lowest cell density

Table 2.5: Summary of SFMR notation.

P(µi) =
µi

∑jµj
,∀j ∈ {1..N} (2.26)

Algorithm 1 SFMR: Initialization phase
Distribute L nodes over the simulation area according to any given distribution
for each node do

Attribute the node degree probability P(ηl), drawn from F(ωv)

end

As discussed previously, it is worth pointing out that the parameters for the proposed

mobility regime do not need necessarily to be extracted from real mobility traces. In fact,

the model parameters can be set and tuned in order to generate a variety of mobility sce-

narios in terms of number of clusters, their size, as well as the nodes’ mobility degree. In

the proposed model we need to set only 4 parameters, namely the speed range, pause time

range, ymin, and the set of coefficients for the generating function in Equation 2.9. The

tuning of these parameters will depend on the parameters for the scenario itself (e.g. total

area, cell size, number of nodes, cluster size, etc). For the simulation results presented

in the next section, we extracted the parameters from the traces for the sake of having a

baseline (i.e., a real trace scenario) for a fair comparison of all the mobility regimes con-

sidered in our evaluation. That also shows that it is possible to mimic specific real world

scenarios.

From the statistical study presented in Section 2.3, ymin was found to typically fall
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Algorithm 2 SFMR: Movement phase
for each node do

if node decides to move to another cell with probability P(ηl) then
Select next cell with probability, P(µi), drawn from F(ys)
Moves to destination using randomly speed between [Vmin,Vmax]
pauses for a pause-time

end
end

between 10% to 20% of the largest cluster (the highest node density). The coefficients of

Equation 2.9 can be set according to the shape of the target density curve, considering:

(1) the sizes of the clusters one wants to simulate and (2) the total population of nodes,

which will provide an estimate of how many clusters of each size can be simulated. Equa-

tion 2.9 depends on the probability matrix of cells changing to another range (higher or

lower). Depending on the scenario we would like to simulate, this probabilities can be set

differently. For dense scenarios, where clusters are fewer and larger, such probabilities

should be higher. For sparser scenarios, on the other hand the probability of choosing a

given cell should vary little over the range of i.

2.6 Evaluation Methodology

We evaluate the proposed Scale-Free Mobility Regime (SFMR) in terms of how ac-

curately it reproduces real user mobility according to spatial density and mobility de-

gree when compared against real mobility traces. In our study, we also compare SFMR

against four well-known mobility regimes, namely: Random Waypoint mobility (RWP),

Natural [Borrel et al. 2005], Clustered Mobility Model (CMM) [Lim et al. 2006], and

Self-similar Least Action Walk (SLAW) [Lee et al. 2009]. Our rationale for choosing

these mobility models for our comparative performance study of SFMR is as follows.

RWP, despite its limitations, has been widely used to evaluate wireless networks and their

protocols. Natural and CMM were selected as representatives of the class of mobility

regimes that follow the preferential attachment principle. As discussed in greater detail in

Section 2.9, more recently proposed models have extended CMM, e.g., HCMM [Boldrini

and Passarella 2010] and ECMM [Vastardis and Yang 2014] but preserve CMM’s core

preferential attachment based features; as such we use CMM, along with Natural, to rep-

resent preferential attachment based mobility regimes in our comparative analysis.

Similarly, SLAW is a well-known, widely cited mobility regime that accounts for so-

cial structure and social features. As described in Section 2.9, SLAW has inspired and has
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been extended by successors like SMOOTH [Munjal et al. 2011] and MobHet [Silveira

et al. 2016]. This prompted us to select SLAW to represent mobility models that consider

social interactions.

Additionally, we evaluate SFMR’s fidelity to real user mobility by investigating how

it affects network routing behavior, and consequently the efficiency of message dissemi-

nation in ITS, when compared to real mobility traces as well as to the mobility regimes

listed above. We then start by describing these mobility regimes.

2.6.1 Random Way-Point Mobility

Random Way-Point (RWP) mobility is one of the simplest mobility regimes, and be-

cause of that, one of the most used when simulating mobile networks. According to RWP,

during the initialization phase, nodes are placed in the simulation area using any given dis-

tribution. Mobile nodes stay in their current positions for pause time P time units. This

pause time period is usually drawn from a uniform distribution over an interval [0,Pmax],

where Pmax is a pre-configured parameter. The pause time is drawn for every node in-

dividually and once it is over, each mobile node independently and uniformly chooses

a new destination (xd,yd) over the simulated area. The node then moves in a straight

line to the newly chosen destination with a speed, also uniformly chosen over the inter-

val [vmin,vmax], where both vmin and vmax are also pre-configured parameters. Once

the new destination is reached, the node pauses for some random time, chooses another

destination and velocity as before and repeats this process until the simulation is over.

2.6.2 Preferential Attachment Based Mobility

Several synthetic mobility models rely on the so called preferential attachment prin-

ciple [Barabási and Albert 1999]. As such, we also compare SFMR against mobility

regimes that follow this principle, which is based on “attraction points”. As representa-

tives of the "preferential attachment" family of mobility regimes, we use for comparison

the Natural [Borrel et al. 2005] mobility model and the Clustered Mobility Model (CMM)

[Lim et al. 2006].

In Natural, a node’s attraction to a given location is proportional to the location’s

“popularity”. This popularity is proportional to the number of nodes already populating

or moving towards this location. It is also inversely proportional to one’s distance to the

specific location. Thus, the probability Π(ai) that a node chooses an attraction point ai
among all possible attractors is:
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Π(ai) =
Aai,zk

∑jAaj,zk
. Aai,zk is defined as:

Aai,zk =
(1+∑zj∈Z,zj,zkB(ai,zk))√
(Xai −Xzk)

2+(Yai −Yzk)
2

(2.27)

where B(ai,zk) is a Bernoulli variable that is B = 1 if the user zk already populat-

ing or moving towards the attractor ai or 0 otherwise. The tuple (Xzk , Yzk) defines the

coordinates for the mobile user zk and (Xai , Yai) the coordinates of an attractor ai .

We implemented this mobility model by dividing the simulation area into equally

sized squared-cells and considering each cell to be an attraction point. The coordinates

(Xai ,Yai) mentioned above mark the center of the i-th squared attraction point. Once

node zk chooses its new destination, it travels towards to a randomly selected position

inside the cell centered at (Xai ,Yai), with a velocity uniformly selected over [vmin,vmax].

Upon arrival to its destination, a pause time is randomly chosen over [0,Pmax]. A new

destination is selected at the end of the pause period, and this process repeats itself until

the end of the simulation time.

In CMM, the simulation area is divided into a set of subareas used as attractors. Move-

ment occurs similar to a RWP behavior, where speed and pause are randomly selected

within a range. During a initial phase, called the “growth phase”, nodes are placed one-by-

one in each subarea. The probability of each node being placed in each subarea changes

at each node drop, and is proportional to the population of each subarea. As the growth

phase goes on, the probability of assigning a node to each area changes, until all nodes

are placed. During the mobility phase, called rewiring, nodes move from one subarea to

another, following the preferential attachment principle, where the attractiveness of the

area is determined by the current number of nodes assigned to that area. This is similar

to Natural, but not taking into account the distance to the destination. In CMM, nodes

also decide to move or stay in the same subarea according to a parameter called “mobility

factor” ε, in which nodes decide to change cells with a probability equal to ε and decide

to stay in the same subarea with probability equal to (1−ε). This is similar to our mobil-

ity degree, but they do not take into account the power law characteristics intrinsic to this

decision.

2.6.3 Self-similar Least Action Walk

In the Self-Similar Least Action Walk (SLAW) mobility regime, fractal waypoints are

generated using Brownian Motion [Lee et al. 2009]. Fundamental fractal properties are
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used to generate power-law flights. The degree of self-similarity (scale-independence) of

waypoints can be controlled by adjusting the Hurst parameter [Lee et al. 2009]; a greater

Hurst value represents a higher degree of self-similarity in the network. Even though the

Hurst parameter is well-defined mathematically, it is highly difficult to estimate it from a

given data sample. As such, a variety of Hurst parameter estimation techniques have been

proposed [Berzin et al. 2014].

In SLAW, Waypoints work similarly to the attractors in the previous models, and once

they are placed, clusters are formed via transitive closure, i. e., the waypoints that are

connected to each other through multiple links form one cluster [Lee et al. 2009]. In

the beginning of the simulation, every node chooses a set of clusters and a fraction of

waypoints to visit within each of the selected clusters. Then, a trip planning algorithm

called Least Action Trip Planning (LATP) is used and combined with a "walker" model

restricts the mobility of each walker to a predefined sub-section of the total area. We

used an available MATLAB implementation of the SLAW mobility model to generate

mobility traces that follow SLAW mobility [Lee et al. 2009]. Moreover we followed the

guidelines for setting up SLAW’s simulation parameters found in [Lee et al. 2009]. We

fixed the simulation area to be the same as the region covered in the mobility trace and

the number of clusters to be the same as measured in the real trace.

2.6.4 Simulation Setup

We conducted two types of simulations: (1) first, we modified the Scengen [The Sce-

nario Generator ] scenario simulator to generate traces according to RWP (already imple-

mented), Natural and CMM (implemented at Scengen), SLAW (MATLAB implementa-

tion), and SFMR (also implemented in Scengen). Once the simulator was able to generate

the mobility traces we computed the spatial node density distribution results presented in

Section 2.7.1. (2) in the second type of simulation experiments, once the synthetic mo-

bility traces were generated as described above, these and the real traces were fed to the

Qualnet network simulator [Scalable Network Technologies ] in order to evaluate their

impact to core network functions, such as routing and message dissemination for exam-

ple.

For the first type of experiments, in order to compare synthetic traces generated with

RWP, Natural, CMM, SLAW, and SFMR to real user mobility traces, we adjusted the

Scengen simulation parameters according to information extracted from the real trace

for all mobility models. For example, velocity range [vmin,vmax] is set such that average

node velocity (assuming that the velocity of each node is randomly chosen from a uniform

33



distribution of values between [vmin,vmax]), matches the average node velocity extracted

from the trace. In particular, for the RWP regime, in order to address the steady-state

stationarity problem reported in [Yoon et al. 2003], we followed the recommendations

mentioned in that work. More specifically, the velocity range was set to be ±, the stan-

dard deviation measured in the real traces, around the measured average velocity. Then,

velocities were chosen uniformly within that range in which the lower limit was greater

than zero and where the mean matches the one measured in the real trace.

Similarly, the pause time was chosen uniformly in the range [0,Pmax], where the value

of Pmax is such that the average pause time matches the one measured in the real traces.

The dimensions of the rectangular simulation area are set to be the same as in the traces.

Moreover, in our simulation scenarios, we use the same initial positions for the nodes

found in the real traces, except for SLAW which has its own initialization procedure (as

described in Section 2.6.3).

In the RWP simulations using Scengen, a node’s next destination (xd,yd) is randomly

chosen over the simulated area according to a uniform distribution. For SFRM, the choice

of (xd,yd) is given by Equation 2.26, where the intensity values µ are set by the initial-

ization procedure as described in Section 2.4. For Natural and CMM, the probability of

choosing the next destination is computed “on-the-fly”, based on the destination’s popu-

larity as described in Section 2.6.2. SLAW follows its own initialization procedure which

is detailed in Section 2.6.3

For the second type of experiments, synthetic mobility traces generated using Scen-

gen as described above, as well as the real traces were fed to the Qualnet network sim-

ulator [Scalable Network Technologies ]. As previously pointed out, efficient message

dissemination is critical to road safety and transportation efficiency in ITS. Thus, the goal

of these experiments is to evaluate how close to the real trace are the synthetic mobility

regimes as far as their impact on routing and data dissemination.

Parameter Quinta
Average Velocity (±σ)(m/s) 1.2 (±0.53)
Average Pause Time Duration (sec) 3.6
Area Dimensions (meters x meters) 840 x 840
Duration of Simulation (sec) 900
Number of users 97
Number of CBR flows 20

Table 2.6: Simulation parameters.

Data traffic scenarios used in these experiments try to simulate nodes communicating
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with one another in ITS scenarios (e.g., vehicle-to-vehicle, vehicle-to-infrastructure). We

use 20 Constant Bit Rate (CBR) flows between randomly chosen source-destination node

pairs. Flows start at randomly chosen times and stay active during the course of the

whole simulation generating traffic at a rate of 4 packets per second. We use the Ad-hoc

On-Demand Distance Vector (AODV) [Perkins et al. 2003] routing protocol, an Internet

standard for routing in wireless multi-hop ad-hoc networks, and the IEEE 802.11g data

link layer protocol with radio range of 150m and data rate of 54.0 Mbps. Table 2.6

summarizes other simulation parameters used in these experiments.

2.7 Results

Results are reported here for the Quinta trace with a 90% confidence interval over 10

runs. For the runs using the real trace, since we cannot vary mobility, we randomize the

traffic scenarios by varying the source and destination pairs of the flows in each of the 10

runs. The same traffic patterns were used to feed the RWP, Natural, CMM, SLAW and

SFMR simulations, but in these cases, we generated 5 mobility traces with each model,

giving a total of 10×5= 50 simulation runs for each synthetic mobility regime.

2.7.1 Spatial Node Density
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Figure 2.5: Node Spatial Density Distribution.

In order to study spatial node density behavior, we define the Node density distribution

metric as the ratio of cells containing ≥ n nodes. Each curve in Figure 2.5 shows the

density distribution for the Quinta trace and each mobility model, namely SFMR, RWP,

Natural, CMM, and SLAW. The curves shows the distribution at the end of the trace

collection interval, which is at 900 seconds for Quinta.
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Mobility Model Mean Confidence Interval
SFMR 0.0161616 [0.00749751 0.0248257]
SLAW 0.0396465 [0.0234087 0.0558843]
CMM 0.0492424 [0.0282684 0.0702164]
Natural 0.070202 [0.0364066 0.103997]
RWP 0.813131 [0.0442555 0.118371]

Table 2.7: Normalized difference between the spatial distribution resulting from mobility
models and the empirical distributions computed from the real trace: mean and lower and
upper values of the 95% confidence interval.

From these plots we observe that SFMR’s density distribution closely follows the

distribution of the real trace. In the case of RWP, the majority of cells (i.e., more than

80%) present a similar number of nodes (i.e., one or more nodes), and no cells contain

significantly greater concentration of nodes (i.e., no cell contains more than 9 nodes).

This is also the case for Natural, CMM and SLAW. In order to quantitatively compare

how close the node density distributions resulting from the synthetic mobility regimes are

to the real trace, we compute the average normalized difference between the synthetic

traces’ spatial node density distribution and that of the real trace as follows: for each data

point, we compute the absolute value of the difference between the density distribution

resulting from the synthetic model and that of the real trace, divided by the latter. We

average over all data points and Table 2.7 reports these averages as well as lower and

upper values of their 95% confidence interval. Table 2.7 confirms that SFMR’s spatial

density distribution is the closest to the real trace’s when compared to the other mobility

regimes studied.

2.7.2 Performance Evaluation of SFMR

Mobility models are frequently used for simulation purposes when new communication-

based vehicular and human mobile services are being investigated. One key factor re-

searchers and developers must take into account when evaluating solutions through sim-

ulations of mobile scenarios such as V2V and V2I applications is realistic mobility pat-

terns. In fact, mobility models play a vital role in determining the performance of vari-

ous wireless mobile systems, such as Vehicular Ad-Hoc Network (VANET) [Hou et al.

2016], Wireless Sensor Network (WSN) AND Body Sensor Networks (BSNs) [Sadiq

et al. 2018], etc. In ITS an efficient message dissemination scheme is critical to its appli-

cations, such as road safety and urban traffic status. Thus, in order to evaluate SFMR in

such dynamic scenarios we focus on the study of the impact of different mobility models

in an infrastructureless network, when compared to real mobility extracted from a real
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mobility trace.

We report results comparing performance for the AODV wireless ad-hoc network

routing protocol under our mobility regime, the Quinta mobility trace, as well as mo-

bility regimes proposed in the literature and discussed in Section 2.6. The objective here

is not to evaluate a proper ITS system or a real application, but rather evaluate the ability

of our proposed model to deliver realistic node movement and how a network simulation

can be affected by realistic and non realistic mobility. We compute the following metrics

in our study:

• Throughput: is defined as the total number of bytes received at the destination node

divided by the time elapsed between the reception of the first byte of the first data

packet and the reception of the last byte from the last data packet. This quantity is

measured at all nodes and averaged before reported.

• End-to-End Delay: is measured as the time elapsed between the moment a packet is

sent and the instant it is received at the destination. This quantity is then averaged

for all packets transmitted by all nodes in the network.

• Delivery Ratio: is computed as the ratio between the total number of packets re-

ceived by all nodes and the total number of packets transmitted by these nodes.

The above described metrics for throughput, delay, and delivery ratio are reported in

Figures 2.6(a), 2.6(b) and 2.6(c) respectively, over time for the Quinta scenarios. There

is a notable discrepancy between the results for the real trace and results for RWP. Also

noteworthy is how the discrepancy widens over time which can be explained by RWP’s

inability to maintain the trace’s spatial node density distribution over time which directly

impacts routing performance. SFRM, on the other hand, allows the formation and preser-

vation of clusters of nodes, which, in the case of this scenario, resembles closely the real

trace curves. As the clusters are bigger for the realistic scenarios and SFRM, information

delivery is also more efficient, as more nodes are closer together in the clusters.

In the case of Natural, CMM, and SLAW, we notice that routing performance under

these mobility regimes stay close to the real trace up until around 300s for Natural and

around 500s for SLAW and CMM. Up until then, the probabilities of choosing each cell

are based on the initial non-uniform spatial densities, and the mobility regimes are capable

of maintaining some level of node clustering. However, later in the experiment, nodes

start to spread out as the probability of choosing a new cell starts approaching a uniform

distribution. This behavior causes the clusters to dissipate and routing performance starts

to diverge from the real traces.
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Figure 2.6: Network routing performance for the Quinta trace.

2.8 Generating ITS-Inspired Traces with SFMR

As previously pointed out, one of the distinguishing features of SFMR is its ability to

generate mobility traces without the need to prime its parameters using existing traces. In

this section, we demonstrate this feature of SFMR by using it to generate mobility traces

for ITS-inspired scenarios.

2.8.1 Mobility in Urban Scenarios

Suppose we want to simulate mobility in an urban scenario, such as the downtown area

of a large metropolitan region. We could then consider two different types of mobility,

namely pedestrian- and vehicle mobility.

Spatial Density Pedestrians tend to congregate in locations like malls, markets, cafes,

schools, etc. Since pedestrian density tends to be relatively high in most downtown areas

(e.g., compared to rural or even American suburban areas), the mobility model used to

represent spatial node density of pedestrians in urban centers could then be assigned a

lower value for α. This means that the power-law curve representing spatial node density
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of pedestrians in downtown areas would have a longer tail to indicate that a relatively

higher percentage of cells have higher concentration of nodes.On the other hand, if we

are now interested in simulating vehicle mobility in a city center, we could consider fewer

nodes (e.g., in some cities, only public transportation is allowed to circulate in the city’s

downtown area) compared to pedestrians. Assuming that public transportation vehicles

are moving most of the time, except for high traffic congestion spots or bus depots, most

cells would have lower concentration of nodes. As such, we could use a power-law dis-

tribution with longer tail, i.e., a higher value of α, to represent spatial density of vehicles

in a city center.

Mobility Degree To model pedestrian mobility degree, we would assume that most

pedestrians would typically visit less cells due to their limited mobility and thus exhibit

lower mobility degree relative to vehicles. This means that pedestrian’s mobility degree

would follow a power law that decays quickly, i.e., with higher α.

For vehicles, since they can cover longer distances and, as a result, visit more cells,

the tail of the power law describing their mobility degree distribution would be longer

when compared to pedestrians’.

2.8.2 Mobility in Suburban Areas

In the case of American suburbs, we could still consider different mobility regimes

for pedestrians and vehicles. However, unlike urban scenarios, suburbs are typically less

densely populated and there are less people walking than driving.

Spatial Density For pedestrians, there would likely be only a few areas with higher

pedestrian density like parks and street malls, while most everywhere else would present

low densities. As such, we could use a higher α value to simulate spatial density of

pedestrian mobility in American suburban areas.

We could also envision similar behavior for the spatial density of vehicle mobility in

suburban settings, i.e., that most cells will exhibit low vehicle density. As such, we could

use higher α values to model vehicle spatial density in American suburban scenarios.

Mobility Degree In American suburban areas, we could envision scenarios where a rea-

sonable number of vehicles circulate only locally but a good number travels longer dis-

tances, e.g. when people commute to work. As such, we would use lower α values for
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the mobility degree power law distribution.

In the case of pedestrians, we may consider people spending most of their time inside

their property and going out to move around the streets for a few sporadic activities, e.g.,

jogging, walking the dog, go to the playground or store close by. For that reason, we

would recommend using a higher value of α for simulating pedestrians in this conditions.

2.8.3 Sample ITS Mobility Regime

Here we use a sample ITS-inspired mobility scenario to illustrate how SFMR can be

used to generate synthetic mobility traces without the need to extract parameters from

existing traces. The goal is to show how to use SFMR to simulate a given ITS scenario

and validate the resulting spatial density and mobility degree distributions by comparing

them to the ones obtained using our analytical model SFSM derived in Section 2.4. We

use our implementation of SFMR on the Scengen [The Scenario Generator ] simulator to

generate SFMR mobility traces.

In particular, this example simulates 3,000 vehicles moving around a large metropoli-

tan region of size 8km-by-6km. Vehicle speeds vary uniformly over a range of 15 to 40

km/h 2. The duration of the simulation is set to 100.000 seconds (i.e., around 27 hours,

or a little more than a day). We wanted to keep the network always mobile and for that

reason we set pause time to be 0 at all times. Table 2.8 summarizes the simulation param-

eters and their values. We simulated two scenarios by essentially changing the value of

α. We first use an alpha of 1.4 for both mobility degree and density, and then increase α

to 2.4.

Parameter Value
Velocity Range (km/h) [15 - 40] uniform
Average Pause Time Duration (sec) 0
Area Dimensions (meters x meters) 8000 x 6300
Duration of Simulation (sec) 100000
Number of nodes 3000
α for Mobility Degree 1.4 and 2.4
α for Spatial Density 1.4 and 2.4

Table 2.8: SFMR parameters and their values for sample ITS mobility regimes.

The data points in the SFMR curves in Figure 2.7 are averaged over 20 simulation

runs; the graphs also show the SFSM with the previously mentioned values of α. Fig-

2These parameter values were set based on real scenarios as reported in
“http://infinitemonkeycorps.net/projects/cityspeed/”
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ure 2.7(a) shows the spatial density distribution for two values of α. In the example

scenario described in Section 2.8.2 above, most cells present low density of vehicles with

a small number of cells exhibiting high vehicle densities (e.g., shopping malls, supermar-

kets, school campuses, etc); we would use α= 2.4 in this case. The value of xmin was set

to 45 for SFSM with α = 2.4. The value of xmin was then set to 25 in the case of SFSM

with α= 1.4. We observe that both curves match closely the SFSM curves.

One of the curves in Figure 2.7(b), i.e., the one with α = 2.4, shows an example of

high mobility degree where few mobile nodes visit > 1500 cells. This mobility degree

behavior can mimic the behavior of vehicles in a city center as described in Section 2.8.1.

When α = 1.4 the decay of the curve is slower and more nodes have lower and more

uniform mobility degrees, meaning that 25% of the nodes visit from 85 (xmin) to 900

cells. This could be true if we wanted to simulate for example, vehicles moving on the

suburban neighborhood scenario mentioned before in Section 2.8.2.
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Figure 2.7: Mobility degree and spatial density distribution for ITS-inspired mobility
regime generated by SFMR and SFSM.

2.9 Related Work

Intelligent Transportation Systems (ITS) have been receiving considerable attention

from both academia and industry, e.g., in the context of Smart Cities and Internet of

Vehicles (IoV) ( [Datta et al. 2017, Botta et al. 2014]), where vehicles are considered

connected resources through cloud and edge computing technology as well as wireless

communication devices (e.g., smart-phones).

As previously pointed out, ITS has leveraged research and developments from the

vehicular networking (VANET) community to address important transportation problems

such as road safety, congestion control, travel reliability, and infotainment. Some char-
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acteristics of vehicular- and human mobility, such as contact frequency and duration,

locations visited, as well as how far they travel within a given geographical region in

both space and time are crucial to the design and performance of ITS services and their

protocols.

Motivated by ITS and, more broadly, by Smart Cities applications and services, there

has been increased interest in studying human mobility in order to develop more real-

istic mobility models. Since there is no commonly agreed definition of what “realistic

mobility” means, existing models try to mimic real mobility using different approaches

and criteria. For example, a number of models use the preferential attachment principle

which states that “the more connected a node is, the more likely it is to receive new links”.

The seminal work of Barabási and Albert [Barabási and Albert 1999] proposes a model

that generates scale-free networks, i.e., networks whose node degrees follow a power law

distribution. Several mobility models have been inspired by the Barabási-Albert prefer-

ential attachment principle (e.g., [Lim et al. 2010, Kosta et al. 2014, Hsu et al. 2009]).

The work reported in [Noulas et al. 2011], investigates node mobility patterns in a large

number of cities across the world and found that the distribution of node displacements in

the dataset is well approximated by a power-law with exponent β= 1.50 and a threshold

δr0 = 2.87. The Community-based Mobility Model (CMM) [Lim et al. 2006], which we

use in our comparative study and describe in Section 2.6.2, is another model derived from

applying Barabási‘s preferential attachment principle. In [Boldrini and Passarella 2010],

an extension of CMM, called Home-cell Community-based Mobility Model (HCMM)

takes into consideration both node- and location attraction. Under HCMM, nodes are

assigned to a specific community and have social ties with members of this community.

Additionally, some nodes also have social relations with nodes outside of the community.

Nodes then choose an attraction region with a probability proportional to the number of

ties with nodes in that region. In [Vastardis and Yang 2014], an extension to HCMM

called Enhanced Community Mobility Model (ECMM) is proposed, which includes new

features, such as pause periods and group mobility support.

Authors in [Nunes and Obraczka 2011] show that using the preferential attachment

principle to model node mobility leads to undesirable long-term behavior. More specifi-

cally, preferential attachment based mobility regimes do not preserve the original spatial

node density distribution and lead to steady-state behavior similar to random mobility as

exemplified by the RWP model. Instead, real node mobility exhibits invariant density

heterogeneity.

Other approaches study mobility patterns through data captured from WLAN- or cel-

lular infrastructure [Lin and Hsu 2014]. For example, in [Song et al. 2010a], quantitative

42



models that can account for the statistical characteristics of individual human trajectories

are proposed. They show that human trajectories follow several highly reproducible scal-

ing laws, such as the number of distinct locations visited by a randomly moving object, as

well as the probability of a user to visit a given location and the resulting mean square dis-

placement. However, user locations were recorded from GSM-tower cells which provide

low spatial resolution (in the order of few hundreds of squares meters to several square

kilometers). Also, paths taken between two points are often indicated by a series of dis-

continuous sudden jumps and thus are hardly observable with sufficient granularity [Lin

and Hsu 2014]. Thus, mobility models derived using such approaches may remain bi-

ased [Hess et al. 2015b].

More recent efforts to model human mobility have tried to incorporate social struc-

ture and features into their mobility models. For example, the work in [Ribeiro et al.

2012] proposes to account for attraction between nodes when modeling pause times. The

work in [Karamshuk et al. 2014] proposes a mobility framework that allows the genera-

tion of different mobility models by modifying properties such as inter-contact time. The

proposed framework uses as input a social graph in order to detect and map communi-

ties. Users visit these communities over time based on a configurable stochastic process.

Other examples of mobility models that account for social interactions include the work

presented in [Harfouche et al. 2010] and [Rhee et al. 2011]; under their proposed mo-

bility regimes, node movement is influenced by the strength of social ties and the choice

of an attraction point is based on the history of visits of other nodes to that location. The

SLAW mobility model [Lee et al. 2009, Lee et al. 2012] expresses socially-aware mobil-

ity patterns using fractal waypoints and heavy-tail flights between waypoints. According

to [Lee et al. 2009], inter-contact time and pause time distributions extracted from real

traces are shown to fit a truncated Pareto distribution. In [Lee et al. 2009], it is also shown

that SLAW exhibits social structure present among people sharing common interests or

those in a single community such as a university campus, companies, and theme parks.

SMOOTH [Munjal et al. 2011] is a waypoint placement technique proposed to mimic

the Hurst effect used to model self-similarity in SLAW. SMOOTH is validated against

SLAW by comparing statistical features extracted from its synthetic traces against the

same features from synthetic traces generated by SLAW.

Leap Graph [Dong et al. 2013] uses mobile phone data, such as user ID, time calls

start and end, and phone GPS coordinates, to predict the next region where a user will be

located given the user’s current location. In order to predict user mobility, MobHet [Sil-

veira et al. 2016] employs SMOOTH’s techniques to assess the popularity of a particular

geographic area and Leap Graph to determine the frequency at which nodes transition
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between these areas. The proposed mobility model was evaluated in two scenarios, one

using data from a single source (mobile phone call log or GPS location from Twitter) and

another combining the two types of sources. The results show that MobHet exhibit ade-

quate accuracy when it exploits features from all available data sources. They also show

that both SMOOTH using just GPS data and Leap Graph just using mobile phone data

achieve comparable performance to MobHet.

A framework to characterize and classify Point of Interests (PoIs) according to their

relevance to individual mobile users is proposed in [Jahromi et al. 2016]. The accuracy

of the framework, in terms of spatio-temporal regularity in visiting PoIs and also connec-

tivity properties of human mobility, is evaluated by comparing against real traces as well

as synthetic traces generated by SLAW.

2.10 Conclusion

In this chapter, we showed the scale-free properties of some important human mo-

bility characteristics, namely spatial node density and mobility degree. In our study we

analyzed a set of real mobility traces collected in diverse scenarios motivated by ITS,

namely a city park, a University campus, and taxis in the downtown area of a major city.

We demonstrated that both spatial node density and mobility degree exhibit power law

behavior which then allowed us to derive analytical models for these two mobility fea-

tures. We showed that the proposed analytical model closely matches the empirical data

extracted from the real mobility traces. Another contribution of our work was to use

the proposed analytical models for spatial node density and mobility degree to build a

waypoint-based mobility regime capable of generating synthetic mobility traces whose

spatial node density and mobility degree closely resembles the ones measured in real hu-

man mobility scenarios. As such, the proposed mobility regime can be employed to test

and evaluate ITS services and protocols. Finally, using a network simulator, we evaluated

a wireless ad-hoc network routing protocol and showed that its performance under our

mobility regime and under the real trace is very similar.

Mobility models based on real mobility traces not only benefit the wireless and mobile

networking design, but also have research impact in other areas, allowing more features

about human behavior to be uncovered. For example, studying human mobility can help

us understand the constraints of opportunistic communication and to design practical and

effective forwarding strategies. As presented in this chapter, SFSM model has the ability

to express analytically the behavior of users to tending to congregate and form clusters,
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where some regions may be quite dense while others completely deserted. Another inter-

esting behavior found by SFSM is that there are few nodes that have very high mobility

visiting many places in the trace, while the majority of users have a sedentary behavior,

that is, they visit only few places. In the following chapters, we will use these findings,

as it has considerable impact on fundamental network properties such as connectivity and

capacity, to design a practical and effective forwarding strategy in opportunistic networks.

To that end, in the next section, we are going to apply the principles of SFSM to identify

communities based on the real behavior described by our proposed analytical model.
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3. Using Real Mobility Records for User Community
Identification in Smart Cities

Motivated by Smart City applications and services, this chapter presents a novel ap-

proach to identifying user communities in communication networks. The proposed ap-

proach uses clustering techniques to group users in communities based on their geographi-

cal preferences such as time spent in certain locales, and mobility-related features, namely

mobility speed and time between consecutive movements. We describe our user commu-

nity identification methodology in detail including how mobility features can be extracted

from real mobility traces. We present results obtained when using our approach to iden-

tify user communities in three different mobility scenarios as well as an evaluation study

comparing the performance of different clustering algorithms. In addition, a validation

methodology that uses image-based similarity metrics is proposed, in order to assess the

quality of the identified communities.

3.1 Introduction

According to the United Nations’ Department of Economics and Social Affairs1, it

is estimated that 55% of the world’s population currently lives in urban centers and will

reach 68% by 2050. Consequently, modern cities face tremendous challenges including

the need for efficient mass transit and transportation systems, communication infrastruc-

ture, power and water distribution systems, to name a few.

Leveraging advances in computing and communication, Smart Cities have emerged

as a way to address such challenges. Smart Cities make use of ubiquitous information,

computing, and communication infrastructure to ensure efficient and sustainable city op-

erations and services [Alavi et al. 2018,Wikipedia contributors 2019]. A notable example

1https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-
prospects.html
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of “urban analytics” [Senaratne et al. 2018, Bocconi et al. 2015], i.e., the use of infor-

mation technology applied to urban planning, and in particular, Smart Cities, is the study

of human mobility. For instance, information about people with similar geographical and

temporal mobility behavior is critical for efficient and environmentally-aware transporta-

tion and transit planning. Additionally, information on vehicle trajectory will also be used

to plan location of fueling (e.g., gas-, electric, fuel-cell) stations [Niu et al. 2016]; car-,

bike-, and scooter sharing services can also take advantage of human movement patterns

to optimize their deployments [Liu et al. 2017, Behrendt 2016].

Capturing patterns in human mobility is also important to understand and account

for social interactions which affect a range of important services such as public health

(e.g., infectious disease management), law enforcement and emergency response, social

services, recreation and entertainment, etc [Zhong et al. 2014]. Furthermore, periodic

and occasional contacts between people (and their computing/communication devices,

e.g., smart phones, smart watches) present themselves as opportunities to exchange and

forward data. Opportunistic communication is especially attractive in scenarios where

existing communication infrastructure is heavily loaded (e.g., densely populated areas,

hot spots), or its coverage is insufficient due to sparse infrastructure deployment (e.g.,

suburban regions) [Conti and Giordano 2014]. It also becomes critical in emergency

response and disaster recovery operations as the existing communication infrastructure

may become completely overloaded and/or compromised.

Prior work uses social relationships among users in a network to decide when and

to whom messages should be opportunistically forwarded [Yuan et al. 2016, Alajeely

et al. 2017, Li and Wu 2009, Chuah and Coman 2009]. Our work focuses on capturing

social relations among users by identifying user communities. Some existing approaches

to user community identification in communication networks use features such as radio

frequency signatures (e.g., whether users are communicating using Bluetooth), encounter

history, as well as contact time and duration [Yuan et al. 2016, Yang et al. 2013, Nguyen

et al. 2017, Eagle and (Sandy) Pentland 2006]. Some use information obtained through

online social network services or data from communication service providers, e.g., cell

phone call records [Phithakkitnukoon et al. 2012].

In this chapter, we propose a user community identification approach based on user

mobility characteristics, including time spent in a given locale, average time between

movements, or pause time, and average mobility speed. Such features are usually avail-

able from user mobility records such as GPS traces and Wi-Fi access point association

traces. The proposed methodology uses clustering techniques to identify user commu-

nities based on common mobility characteristics extracted from real mobility traces. We
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investigate different clustering algorithms, each representing four main categories of clus-

ter classifiers proposed in the literature [Jain et al. 1999, Cebeci and Yildiz 2015, Hasnat

et al. 2015], namely: Exclusive-, Overlapping-, Hierarchical-, and Probabilistic Clus-

tering. Additionally, we use Principal Component Analysis (PCA) and index metrics, as

well as spatio-temporal information from real mobility traces to evaluate the performance

of the different clustering techniques.

It is important to mention that, despite the fact that the methodology does not require

such data, this data can be added to the feature matrix, if it is available.

3.2 Clustering for user community identification

As previously discussed, identifying communities or clusters of users has applications

in a range of Smart City services, including opportunistic networking. Human social net-

works are known to have strong clustering characteristics [Newman 2004]. For example,

people spend more time with family, friends and co-workers than with strangers. How-

ever, it is often quite challenging to find and/or access labeled records of such relation-

ships in order to use them to identify user communities. Alternatively, human mobility

also exhibits intrinsic patterns that are guided by habit, social links, and geographical

preference [Hossmann et al. 2011], and arguably human mobility attributes such as geo-

graphic location, speed, direction of movement, and pause time may be easier to record

and access. As such, our premise in this work is to use such mobility features that can

be extracted from more widely available traces of real user mobility to infer social struc-

ture. User communities can then be identified by clustering users with similar mobility

features.

Clustering is a well-known unsupervised learning method that can be used to find

structure in a collection of unlabelled data, organizing data items into groups with similar

features. Choosing an adequate clustering algorithm for a particular dataset depends on

factors such as dataset size, structure, as well as specific goals and constraints (e.g., energy

efficiency, geographic proximity, etc) [Cebeci and Yildiz 2015, Bora and Gupta 2014].

Clustering algorithms can be generally grouped into 4 categories: exclusive-, overlapping-

, hierarchical-, and probabilistic clustering [Jain et al. 1999,Duda et al. 2001,Cebeci and

Yildiz 2015].

• In exclusive clustering, data is grouped in an exclusive way, in other words, a data

item can belong to only one cluster. The K-means algorithm is a well-known rep-
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resentative of exclusive clustering.

• Overlapping clustering uses fuzzy sets to cluster data, which means that, unlike

exclusive clustering, a item data can belong to two or more clusters with different

degrees of membership. The appropriate membership value will be associated to

the data; fuzzy c-means is an example of an overlapping clustering algorithm.

• At the start of hierarchical clustering execution, each data observation is consid-

ered to belong to its own cluster. Then, at each iteration of the algorithm, the two

nearest clusters are merged. When the specified number of clusters is reached, the

algorithm terminates. We use the hierarchical clustering algorithm to represent this

category of clustering algorithms.

• Probabilistic clustering, as the name conveys, uses a completely probabilistic ap-

proach to cluster data. Gaussian mixture clustering is well-known probabilistic

clustering algorithm.

In this chapter we use four of the most widely used clustering algorithms represen-

tative of the categories described above, namely: k-means, fuzzy c-means, hierarchical

and gaussian mixture clustering. We discuss each one of these algorithms in more detail

below.

3.2.1 Hierarchical clustering

Hierarchical clustering algorithms are one of the most popular clustering techniques.

It recursively find groups following two strategies: (1) agglomerative - a bottom-up ap-

proach where each data point starts in its own cluster and the most similar pair of clusters

are merged successively to form a cluster hierarchy; (2) divisive - top-down approach

where all the data points start in one cluster and recursively each cluster is divided into

smaller clusters.

One advantage of Hierarchical clustering is that it does not require the number k of

clusters to be specified a priori. This is the case in user community identification using

unlabeled mobility traces. We discuss how to select the value for k in Section 3.3. On the

other hand, the disadvantage is that the most common hierarchical clustering algorithms

have a complexity that is at least quadratic in the number of data points compared to the

linear complexity of K-means and MBC [JAI 2010].

Algorithm 3 shows the Agglomerative hierarchical clustering algorithm, where a sim-

ilarity metric xi,j is used to evaluate the distance between attributes of nodes i and j.
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Example of node attributes extracted from mobility traces include location, speed, pause

time, etc.

Algorithm 3 Hierarchical clustering
Assign each item x1, ...,xn to K clusters, where K= n
Given a distance function xi,j for items i and j
while number of clusters ! = single cluster of size n do

Find the closest pair of clusters (min(xi,j)) and merge them into a single cluster
Compute similarities between the new cluster and each of the old clusters

end

Step 5 of the algorithm can be done in different ways. The method we use in this work

is based on the Ward approach [Murtagh and Legendre 2014], where, at each step, the cri-

terion of choice for the next merge is based on an optimal value of the objective function.

This function can be any function that reflects the desired similarity between resulting

clusters. We used the minimum variance criterion, which minimizes the total variance

within the cluster. That is, at each step, the pair of groups that leads to the lowest increase

of the total variance of the merged cluster is found. This increase must be proportional to

the square of the Euclidean distance between the cluster centres (centroids), given by

xi,j =

√
∑
l,i,j

(Ail−Ai,j)
2 (3.1)

where Ai,j is the adjacency matrix element for vertices i and j. Note that Euclidean

distance is actually a measure of dissimilarity between nodes, being zero for vertex pairs

that are structurally equivalent and larger for vertex pairs that do not share similarities.

Also note that the Ward method tends to combine clusters that have a small number

of observations, in addition to allocating clusters that are the same in size and spheri-

cal [Chris Fraley 2002].

3.2.2 K-means Clustering

K-means clustering falls under the exclusive clustering category which allows no over-

lap between clusters. Similarly to other cluster techniques, K-means clustering partitions

data samples into a pre-defined number k of clusters so as to minimize the sum of the

square of the distances between samples in the cluster. The algorithm for k-means clus-

tering operates as follows: (1) k centroids are selected amongst the data samples; the

initial choice of centroids can be made randomly, or can be pre-specified; (2) the Eu-

clidean distances between each data samples and each cluster centroid are calculated, and

the node is assigned to the nearest centroid’s cluster; (3) the centroid is recalculated based
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on the cluster’s new membership. The steps of the algorithm are repeated until there

are no further cluster membership changes or until there are no further changes in the

centroids.

K-means algorithm requires that some parameters be specified during initialization,

such as: the number k of clusters, centroids’ initial positions, and distance metric. The

most critical choice is the number of clusters. We discuss a few ways for choosing k in

Section 3.3. The cluster initialization is generally accomplished by running the algorithm

with different initial partition and choosing the partition that gives the smallest square

error. Finally, in terms of distance metric, the one most commonly used to compute the

distance between data points and centroids is the Euclidean metric.

K-means is one of the most widely used algorithms for clustering due its easy im-

plementation, simplicity, efficiency, and empirical success [JAI 2010]. The complexity

of the algorithm is linear and most of it comes from the time spent in computing vector

distances. This means that k-means is more time efficient than the hierarchical algorithms.

3.2.3 Model-Based Clustering

Model-Based Clustering (MBC) is a representative of a probabilistic model approach

for data clustering that models the density function by a probabilistic mixture model. This

method assumes that the data is generated by a mixture distribution and the clusters are

defined by one or more mixture components [Dasgupta and Raftery 1995]. Each clus-

ter, can be model by a normal or Gaussian distribution that has three parameters: mean

vector, covariance matrix and an associated probability in the mixture, where each point

has a probability of belonging to each cluster. The Expectation-Maximization (EM) algo-

rithm, initialized by hierarchical model-based clustering, is often used for estimating the

parameters of the model, where clusters are centered at the mean value, and the geometric

features (shape, volume, and orientation) are given by the covariance matrix.

The MBC consists of three main steps: (1) During initialization, it is necessary to

specify the number of clusters and randomly initialize the distribution parameters for each

group. The agglomerative hierarchical clustering is used to obtain the initial partitions of

the data. (2) Then, compute the probability that each data point belongs to a particular

cluster. (3) Application of the EM (Expectation-Maximization) algorithm, which is based

on a maximum likelihood estimate, used to estimate the likelihood of the mixture param-

eters. (3) Finally, once the covariance matrix of the components lead to different models,

the BIC technique (Bayesian Information Criterion) is used to choose the best model.
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Model-Based Clustering (MBC) has linear complexity and attempts to deal with a

more arbitrary shaped clusters. Due to the standard deviation parameter, the clusters can

take on any ellipse shape, rather than being restricted to circles. This solve problems

found in hierarchical and k-means algorithms, which tend to produce spherical and same

size groups.

3.2.4 Fuzzy C-Means Clustering

Fuzzy clustering generalizes partition clustering algorithms (such as k-means and hi-

erarchical) by allowing data to belong to two or more groups. In k-means and, hierarchical

clustering, each data is a member of only one cluster. In Fuzzy clustering, each cluster

is associated with a membership function that expresses the degree (i.e., the probability

that a data is classified into a cluster) to which the data belong to a cluster. The algorithm

performs clustering by iteratively searching for a set of fuzzy clusters and the associated

cluster centers that best represent the structure of the data.

The fuzzy c-means algorithm works as follows: (1) Initialize the membership function

matrix (uij); (2) At K-step, calculate the centers vectors cj with uij, (3) Update ukij, u
k+1
ij

and (4) If ||uk+1ij −ukij|| is less then a certain termination criterion, between 0 and 1, then

stop, otherwise return to (2).

Where, the membership uij, i.e, the degree to which data point xi belongs to cluster

cj, is given by,

uij =
1

∑
C
k=1(

||xi−cj||
||xi−ck||

)
2

m−1

(3.2)

wherem is the hyper- parameter that determine the level of cluster fuzziness. In other

words, the higherm is, the fuzzier the cluster will be in the end. The cluster center cJ is

cj =
∑
N
i=1u

m
ij .xi

∑
N
i=1u

m
ij

(3.3)

The fuzzy c-means and k-means clustering are very similar once they attempt to min-

imize the same objective function. They differ from the addition of the membership uij
and the parameter m. When m = 1, the values of memberships assume 0 or 1, and the

fuzzy cluster is reduced to the k-means algorithm.

Fuzzy c-means clustering has a complexity that is close to K-means clustering, but it
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still requires more computation time due to the fuzzy measurement calculations [Bridges

et al. 2000]. The Fuzzy clustering has the advantage that it does not force every object

into a specific cluster. On the other hand, it has much more information to be interpreted.

3.2.5 Discussion

The clustering classification and clustering algorithms described in this section sug-

gest that there is no one-size-fits-all solution, i.e., no one clustering algorithm is univer-

sally applicable [Jain et al. 1999]. The efficiency of the algorithm is greatly dependent

on the application and its available datasets. Additionally, information about cluster at-

tributes such as size and scope is often not available. In the next section, we conduct an

evaluation study comparing the performance of the clustering algorithms described above

applied to user community identification based on features extracted from GPS and WiFi

mobility traces. This comparative performance study is carried out as part of the user

community identification methodology we propose and describe in detail below.

3.3 User Community Identification Methodology

As illustrated in Figure 3.1, our proposed user community identification methodology

consists of four steps, namely:

(1) pre-processing the datasets, (2) determining the number of user communities, (3)

clustering users into communities, and (4) validation and visualization. Each of these

steps are described in detail below.

Data 
transformation  

Feature matrix 
extraction 

Pre-processing 

Model Selection 
(BIC)  

Set number k of 
communities 

 Identifying 
groups GPS or Wi-Fi 

mobility traces  
(raw data) 

Region partition 

Apply clustering 
algorithms 

Obtain 
communities 

Clustering 

Data Visualization 
(PCA) 

Comparison  
(SSIM, MSE, ARI) 

Validation 

Figure 3.1: Method for community discovery in real mobility traces

• Step 1 - Mobility Trace Pre-processing and Feature Extraction

The datasets used in this study are described in more detail in Section 3.4. The

dataset pre-processing step consists of extracting desired features from raw mobility

traces and construct a feature matrix.
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In some of the mobility traces, user trajectories are recorded in latitude-longitude

geographical coordinates. For these traces, geolocation coordinates were converted

to two-dimensional UTM Cartesian coordinates [Langley 1998]. In the case of Wi-

Fi datasets the location of a user was set to the location of the access point to which

the user was associated at the time.

Cell Division: The geographical region containing all the users as they move

around is divided into cells of size 300-by-300 meters. To validate our choice of

cell size, we ran experiments varying the cell dimension a few tens of meters up

and down. We observe no significant impact on the results when considering cell

dimensions that are not too small or too big. It is worth mentioning that decreasing

the cell size will result in increasing the number of rows in the feature matrix as

explained below.

Feature Matrix: User spatio-temporal features are organized using a feature matrix

SM consisting of N rows, where N is the number of users, and C+ 2, where C

is the number of cells. SM(i, j) contains the average time user i spent in cell j.

Two additional columns log the average speed of each mobile node and the user’s

average pause time.

Pause Time: The pause time is typically defined as the time between two consec-

utive movements by the same user. For our study, we consider that a user is not

moving if the user does not move more than 1 meter. As such, if a node’s dis-

placement is less that 1 meter between two consecutive records, the time interval

between these two records is added to the node’s pause time. If the following record

meets the same displacement limit criteria, then the time between those subsequent

records are also counted towards the node’s pause time, and so on. A pause interval

ends when this threshold criterion is no longer valid. A node’s average pause time

is then calculated as the average over all pause times for that node. Note that since

the WiFi dataset does not have enough granularity to allow us to calculate the user’s

average pause time and speed accurately, the feature matrix for the WiFi trace only

has C columns containing the average time users spend in the different cells.

Normalization: The feature matrix must be normalized to avoid that higher values

of a given attribute skew the cluster analysis. To this end, we normalize the average

time a node spends in a cell by the total time the node appears in the trace and

represent it as a percentage. Pause time and speed are normalized by the maximum

pause time and speed encountered in the trace.

Logit Transformation: We apply the Logarithmic Likelihood Logit function [Jaeger

2008] to the normalized feature matrix. The Logit function performs a nonlinear
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transformation that converts the values of the feature matrix’ attributes which are

between (0,1) to values between (−∞,∞) that are symmetric at 0.5. Besides high-

lighting the differences and similarities between observations for each variable, this

transformation also improves similarity detection by the clustering algorithms.

The Logit() function is defined as a logarithm of relative probabilities. If p is the

probability of an event, then (1−p) is the probability of not observing the event,

and the relative probabilities of the event are p/(1− p). Hence, the Logit of p

between 0 and 1 is given by

Logit(p) = log
(

p

1−p

)
(3.4)

Note that Logit is not defined when p = 0 or p = 1. One solution to this problem

is to add some small value, ε to the numerator and to the denominator of the Logit

function.

• Step 2 - Determining the Number of User Communities

Some clustering algorithms rely on specifying a priori the number of clusters. We

use the Bayesian information criterion (BIC) [Hasnat et al. 2015] estimator to de-

termine the number of clusters k. BIC is a well-known technique that has been

extensively used to find the most appropriate number of parameters for a model.

Each combination of the number of clusters corresponds to different statistical mod-

els, reducing the problem of finding the best number of clusters to comparisons

between a set of possible clusters. Therefore, if several models M1, ...,Mk are

considered, with a priori probabilities p(Mk),∀k= {1, ...,K}, then according to the

Bayes theorem, the posteriori probabilities of the model Mk, given by data D, can

be obtained by [Chris Fraley 2002]:

p(Mk|D) ∝ p(D|Mk)p(Mk). (3.5)

According to the Bayesian model selection form, if the p(Mk) probabilities are

equal, then the choice of the model is given by the maximum likelihood between

the models. This likelihood can be approximated by the BIC, such that:

BICk = 2 logp(D|θk,Mk)−K log(n) ∝ 2 logp(D|Mk) (3.6)

where K is the number of independent parameters that must be estimated (e.g., the

number of clusters) for theMk model and θk is the parameter vector that maximizes
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the likelihood function for theMk model.

After the BIC calculation for several group sizes, one must decide the first local

maximum, which shows the number of clusters k that is more appropriate to the

model.

• Step 3 - Clustering Users into Communities Once the number of clusters k is

determined, the next step is to apply the different clustering techniques described in

Section 3.2, namely

Hierarchical Clustering, K-means, Model-Based Cluster (MBC) and Fuzzy C-means

clustering, in order to identify similarities amongst users and group them into com-

munities accordingly.

Once user communities are identified using the different clustering algorithms, the

next step is to evaluate how similar users within the same community are according

to their mobility features, i.e., geographic preference, average speed and average

pause time, and, considering the same features, how different users across commu-

nities are.

• Step 4 - Validation and Visualization

Recall that our goal is to identify user communities based on the users’ mobility

characteristics. As such, there is no user community organization that can be con-

sidered “ground truth” and that can be used as baseline to evaluate how well the

different clustering approaches can identify user communities.

Therefore, we used Principal Component Analysis (PCA) and also some metrics

[Chakraborty et al. 2017] to identify the similarities between users to evaluate the

algorithms.

PCA is an statistical method for extracting relevant information from usually highly

dimensional data. The goal of PCA is to reduce the data set dimensionality that

consist of a large number of interrelated variables, while retaining as much as pos-

sible of the variance present in the data set. In order to achieve that, the data set

is transformed in a new set of variables, named principal components (PCs), which

are uncorrelated. The first few PCs retain most of the variance present in all of

the original variables. Thus, if a good representation of the data exists in a small

number of dimensions then PCA will find it, i.e. if we plot the values for each ob-

servation of the first two PCs, we get the best possible two-dimensional plot of the

data. It will give a straightforward visual representation of what the data look like.

PCA helps to find structure among objects which could not be visualized otherwise.

Therefore, we use PCA in order to verify whether the clusters were able to distin-
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guish individuals with similar mobility characteristics and geographical preferences

in the same group, and distinct ones in different groups. Closeness in the score plot

indicates similar “behavior” between samples.

Therefore, by applying PCA to our data we are able to (1) explore the high di-

mensional data and identify patterns on them; (2) visualize the data when their

dimensionality is reduced to R3 or even at the R2; (3) analyze the data through the

use of statistical tools such as probability density, clustering or classification.

In addition, to quantitatively evaluating the quality of clusters defined by the clus-

tering algorithms, we proposed a validation method using the users positions over

time to generate images of their trajectory along the mobility trace. Then, we com-

pared the image pairs of users belonging to the same cluster and to different clusters

using three image comparison metrics, namely: Mean Square Error (MSE), Struc-

tural SIMilarity Index (SSIM) and Adjusted Rand Index (ARI). More details on the

evaluation method are presented in Section 3.4.3.

3.4 Experimental Results

We evaluate the proposed methodology and the clustering algorithms in two steps:

first, we use PCA to reduce the number of data dimensions and assist in community

structure visualization. Second, we use three metrics to compare the performance of the

different clustering algorithms studied.

3.4.1 Experimental Datasets

The datasets used in this study represent different mobility scenarios, namely Wi-Fi

association traces from the Dartmouth college campus’ WLAN [Kotz et al. 2009], the San

Francisco cabs [Piorkowski et al. 2009] GPS trace, and the GeoLife [Zheng et al. 2010]

dataset. The Dartmouth Wi-Fi trace logs user access to Dartmouth College’s campus

WLAN using Access Point (AP) association and disassociation events. It has 6,524 users

over 60 days.

The GeoLife trace captures various modes of transportation in the city of Beijing,

China, (e.g. walking, cycling and driving). It includes trajectories of 182 users collected

over a period of three years and sampled every 5 seconds. User trajectories are repre-

sented in the dataset by a sequence of latitude and longitude coordinates over time. The

dataset contains 17,621 trajectories with a total distance of 1,292,951 kilometers and total

duration of over 50,000 hours. The San Francisco cab trace consists of GPS trajectories of
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483 cabs in the City of San Francisco, USA. It was collected during 24 days with samples

ranging from 1 to 3 minutes.

The community structure extracted from the mobility traces was obtained by apply-

ing the community identification methodology presented in Section 3.3 which identified

communities of different sizes by applying the four clustering algorithms described in

Section 3.2. Table 3.1 shows, for each clustering algorithm, the number of users in each

community for all traces, i.e., GeoLife (GL), San Francisco (SF), and Dartmouth (DT).

In the table, communities are shown ordered by size so that it is possible to compare

the results obtained through the different cluster algorithms. We can observe from Table

3.1 and Figure 3.2 that the groups identified by the four algorithms studied for the Geolife

and SF traces are similar in size and shape. This is not true for the Dartmouth trace, as

Table 3.1 shows a much bigger variation in the size of the clusters. This may be caused

by the fact that the Dartmouth trace has only access points association / disassociation

information, i.e. it does not have the whole trajectories of nodes that the other traces

do. Also, Dartmouth does not have the spacial restrictions that are present in Geolife

and SF traces. These last two traces are restricted by roads and pathways while, by the

nature of the Dartmouth trace, any node can transition from one location to the other

without passing through other locations. It should be noted that the Fuzzy algorithm, in

this scenario, was not able to find similarities to divide the groups into 9 communities,

as indicated by the methodology through the BIC. Finally, the quality of the clusters

presented in Table 3.1 is discussed in Sections 3.4.3 and 3.4.2.

Trace Community 1 2 3 4 5 6 7 8 9
GL K-means 32 31 28 27 21 20 10 8 –
GL HC 37 33 28 24 20 17 10 8 –
GL MBC 33 31 28 22 19 19 17 8 –
GL Fuzzy 43 36 34 18 18 11 9 8 –
SF K-means 82 54 50 44 43 41 37 37 37
SF HC 85 71 58 47 39 36 34 28 27
SF MBC 85 54 53 46 42 41 39 36 29
SF Fuzzy 82 64 59 46 41 37 37 31 28
DT K-means 334 283 267 265 229 219 229 167 73
DT HC 403 289 258 245 244 155 150 148 112
DT MBC 537 331 313 304 148 138 111 66 56
DT Fuzzy 1060 886 51 4 3 – – – –

Table 3.1: Community size for each clustering algorithm applied to the Geolife (GL), San
Francisco (SF), and Dartmouth (DT) mobility traces.
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3.4.2 Data Visualization

In order to verify that the clustering algorithms were able to capture the geographi-

cal preferences and mobility characteristics of the users in different communities, a study

of the characteristics presented in each community was conducted. Initially, users’ ge-

ographical preferences were calculated using PCA. The 126 attributes (GeoLife), 734

attributes (San Francisco), and 138 attributes (Dartmouth) relative to the total time each

user remains in each cell have been reduced to 2 principal components, which together

represent around 80% of the data variance. The first principal component accounts for

around 60% of this variance, thus offering a good representation of the users’ geographi-

cal preferences.

Figure 3.2 shows the cluster visualization for GeoLife, San Francisco and Dartmouth

traces, where each dot displayed in the plots correspond to an observation (i.e., a user).

The visualization method presented considers the two principal components, called PC1

and PC2, to display the preference of the user of each community for a given geograph-

ical area. These plots show the first principal component (PC1) on the y-axis and the

second (PC2) on the x-axis. It is possible to observe in these figures that through only two

main components, it is already possible to visualize the communities quite distinctly and

identify intervals in PC1 and PC2 where each community resides.

Figure 3.2 shows that nodes are separated into groups, but it is not possible to visu-

alize the nodes attributes that are contributing to the cluster formation. Thus, in order

to understand the similarities between the nodes attributes that constitute each cluster,

we have reduced the dimensionality of the attribute matrix through PCA, to capture the

nodes geographic preference of the different communities. Thus, Figure 3.3 presents the

empirical probability density function of the PC1 of the geographical preferences for the

four clustering algorithms, in all mobility traces studied. It is possible to observe that

the method of community identification was able to differentiate the user’s preferences

of different communities by certain geographic regions. For example, in Figure 3.3(b),

K-means is able to differentiate five different geographic regions of interest from com-

munities 4, 5, 6, 7, 8. Communities 1, 2 and 3, however, were not differentiated only

with PC1, since their density curves are very overlapping. On the other hand, considering

the second principal component - PC2, Figure 3.4(b), K-means is able to differentiate the

geographical preferences of communities 1, 2 and 3.

Figure 3.5 shows the density of the user average speed for MBC, K-means, Fuzzy, and

HC clustering algorithms for GeoLife and San Francisco traces. It is possible to notice

by the figure that the average speed of the users belonging to the the same cluster are
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Figure 3.2: Different analyses of the clustering algorithms studied for Geolife, San Fran-
cisco cabs and Dartmouth mobility traces.

similar to each other, and dissimilar intra-clusters. Thus, the methodology was able to

differentiate the different characteristics of the user mobility.

Figure 3.6 shows an example of clustering using the cluster algorithms without apply-

ing the logit transformation. We can observe that none of the cluster algorithms were able

to extract the similarities and dissimilarities of the mobility traces. Thus, this step of the

methodology is fundamental for grouping users in different communities successfully.

3.4.3 Evaluation

In this sub-section we complement the results presented in Section 3.4.2 to answer the

following questions: Was the proposed methodology able to increase the average similar-

ity metric between nodes that belong to the same group and also the average dissimilarity

between nodes belong to different groups? What is the impact of different cluster algo-
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Figure 3.3: Probability density function of geographical preferences (PC1) of the reduced
data using PCA for all clustering algorithms, for Geolife, San Francisco cabs and Dart-
mouth mobility traces.

rithms in the capacity of the methodology to identify communities from mobility data?

We introduce tree metrics used to evaluate how well the algorithms split the input data

into different clusters by looking at the similarities in geographical preferences between

elements of each cluster. In order to do that, we propose to use the data on the geograph-

ical positions and generate images for each node. This would generate something similar

to a heat map of the geographical preferences of that node. Once we have images for each

node, we can compare pairs of images, towards determining how similar they are.

An image for each node is generated as follows: First we rearrange into a matrix,

the features used in the previous section for classifying each node. If we then look at

these matrices as images, where each position of the matrix is a pixel, the values of each

position would be the intensity of that pixel. Then we are able to compare the similarity

61



−15 −10 −5 0 5 10 15

0
.0

0
.2

0
.4

0
.6

Geographical Preference − HC

D
e

n
s
it
y

Communities

1

2

3

4

5

6

7

8

(a) GeoLife - HC

−15 −10 −5 0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Geographical Preference − KMeans

D
e

n
s
it
y

Communities

1

2

3

4

5

6

7

8

(b) GeoLife - K-means

−15 −10 −5 0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Geographical Preference − MBC

D
e

n
s
it
y

Communities

1

2

3

4

5

6

7

8

(c) GeoLife - MBC

−10 −5 0 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Average Speed − MBC

D
e

n
s
it
y

Com_MBC

1

2

3

4

5

6

7

8

(d) GeoLife - Fuzzy

−2 −1 0 1

0
5

1
0

1
5

2
0

Geographical Preference − HC

D
e

n
s
it
y

Communities

1

2

3

4

5

6

7

8

9

(e) San Francisco - HC

−2 −1 0 1

0
5

1
0

1
5

2
0

Geographical Preference − KMeans

D
e

n
s
it
y

Communities

1

2

3

4

5

6

7

8

9

(f) San Francisco - K-
means

−2 −1 0 1

0
5

1
0

1
5

2
0

Geographical Preference − MBC

D
e

n
s
it
y

Communities

1

2

3

4

5

6

7

8

9

(g) San Francisco - MBC

−2 −1 0 1

0
5

1
0

1
5

Geographical Preference − Fuzzy

D
e

n
s
it
y

Communities

1

2

3

4

5

6

7

8

9

(h) San Francisco - Fuzzy

−20 0 20 40 60

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

Geographical Preference − HC

D
e

n
s
it
y

Com_HC

1

2

3

4

5

6

7

8

9

(i) Dartmouth - HC

−20 0 20 40 60

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

Geographical Preference − KMeans

D
e

n
s
it
y

Com_kmeans

1

2

3

4

5

6

7

8

9

(j) Dartmouth - K-means

−20 0 20 40

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Geographical Preference − MBC

D
e

n
s
it
y

Com_MBC

1

2

3

4

5

6

7

8

9

(k) Dartmouth - MBC

−20 0 20 40

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Geographical Preference − fuzzy

D
e

n
s
it
y

Com_fuzzy

3

4

8

(l) Dartmouth - Fuzzy

Figure 3.4: Probability density function of geographical preferences (PC2) of the reduced
data using PCA for all clustering algorithms, for Geolife, San Francisco cabs and Dart-
mouth mobility traces.

in the behaviour or geographical preferences of two nodes, by comparing the similarities

between the two images (i.e. trajectories of node pairs and intensity of the pixel, that

would be related to the time spent at that position). Figure 3.7 shows an example of three

different images generated by the feature matrix of three different nodes. We can observe

by visual inspection that Figures 3.7 (b) and (c) show greater similarity to each other. In

other words, the two users tend to visit similar locations (pixels) and spend more time

in the same places (yellow regions). On the other hand, users (a) and (b) show greater

dissimilarity, since they prefer to visit and spend time in different places, i.e. user (a)

spends most of the time in the top region (left-center), while user (b) prefers the middle

center. Such visual inspection can be confirmed by the metrics shown in the Figure 3.7

and explained below.
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Figure 3.5: Average Speed for all clustering algorithms, for Geolife and San Francisco
cabs mobility traces.

There are few methods that can be used to find how similar two images are. The sim-

plest quality metric is the mean square error (MSE), computed by averaging the squared

differences in the intensities between the pixels of two images. However, two images

with the same MSE may have different types of errors. Structural SIMilarity (SSIM) In-

dex identifies the information structures found in the images and therefore appears as an

alternative to the previous method. A third metric to evaluate the clustering results of the

proposed method is Adjusted Rand Index (ARI) [Santos and Embrechts 2009]. ARI is the

corrected-for-chance version of the Rand index (RI), which measures the percentage of

decisions (cluster assignments of all pair of users) that are made correctly.
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Figure 3.6: MBC data clustering without using logit transformation - Geolife mobility
trace.
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Figure 3.7: Trajectories and geographical preferences of three different nodes and the
comparative metrics between each image pair. Images (b) and (c) are visually more sim-
ilar, and present higher similarity metrics (e.g., SSIM and ARI) and smaller dissimilarity
metrics (e.g., MSE), than (b) and (a).

The SSIM metric compares two images aligned and in the same scale, pixel-by-pixel.

Three similarity functions are computed on the image data: luminance, contrast, and

structural similarities.

The similarity for two images X and Y can be calculated as follows:

SSIM(x,y) = [l(x,y)]α · [c(x,y)]β · [l(x,y)]γ (3.7)

where the luminance comparison function l(x,y) is a functions of the mean intensity

of image x and y and is given by

l(x,y) =
2µxµy+C1
µ2x+µ

2
y+C1

. (3.8)

The contrast comparison function c(x,y) is the comparison of the standard deviation

intensity of image x and y and is given by

c(x,y) =
2σxσy+C2
σ2x+σ

2
y+C2

. (3.9)

Finally, the structure comparison function s(x,y) is defined as

s(x,y) =
σxy+C3

σx+σy+C3
, (3.10)

where σxy is the covariance of x and y, that can be estimated as

1

N−1

N

∑
i=1

(xi−µx)(yi−µy) (3.11)
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Also, σx and σy are the standard deviation and µx and µy the average value for x and

y respectively.

The constants C1, C2 and C3 are small constants that provide stability when the

denominator approaches zero. More details about the SSIM algorithm can be obtained

in [Wang et al. 2004].

Another successful cluster validation index for measuring agreement between two

partitions in clustering analysis is Adjusted Rand Index (ARI) [Santos and Embrechts

2009]. ARI measures the relation between pairs of dataset elements, and can be calculated

as follow:

ARI=
∑i,j

(nij
2

)
−[∑i

(
ni
2

)
∑j

(mj

2

)
]/
(
n
2

)
1
2 [∑i

(
ni
2

)
+∑j

(mj

2

)
]− [∑i

(
ni
2

)
∑j

(mj

2

)
]/
(
n
2

) (3.12)

where n is the number of elements in a given set S, nij denotes the number of pairs in

common between two partitions, U= u1, ...,uR and V = v1, ...,vC, of this set. ni andmj

are defined from the contingency table bellow.

U \ V V1 V2 ... VC Sums
U1 n11 n12 ... n1C n1
U2 n21 n22 ... n2C n2
... ... ... ... ... ...
UR nR1 nR2 ... nRC nR
Sums m1 m2 ... mC

Table 3.2: Number of pairs in common between two partitions U and V of a set S.

ARI has a score between -1.0 and 1.0, where an ARI close to 0 means that the two

partitions do not agree on any pair of points, and 1 stands for perfect match.

We use MSE, ARI and SSIM to evaluate the performance of the cluster algorithms,

through the following steps:

1. Compute the values for the attributes for each mobile user and construct an image

with the values of these attributes.

2. Compute the MSE, ARI and SSIM index for each pair of nodes in the network,

each with its previously calculated image in the previous step.

3. Compute the MSE, ARI and SSIM mean for all node pairs belonging to the same

community and belonging to different communities (for the 4 applied cluster algorithms).

Note that the more the values of ARI and SSIM approaches 1, the more similar are
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the attributes. The hypothesis to be tested is that nodes belonging to the same community

have ARI and SSIM closer to 1, than nodes belonging to different communities. For the

MSE results, the lower the value, the more similar the nodes are, and vice-versa. On

the other hand, the computed similarity metrics are expected to be lower when computed

between nodes belonging to distinct communities.

Table 3.3 displays the average value of SSIM, MSE and ARI without clustering the

nodes in different communities. In other words, the similarity value between each pair

of nodes in the network was calculated and the mean value was extracted. From this, we

want to establish a benchmark to evaluate whether the proposed methodology was able

to increase the similarity and dissimilarities between nodes belonging to the same and

different communities, respectively.

SSIM MSE ARI
GeoLife 0.24 20.70 0.13
San Francisco 0.73 0.077 0.38
Dartmouth 0.21 25.25 0.20

Table 3.3: Metrics Benchmark - Total average of metrics computed for all traces without
considering the community structure output by the proposed methodology.

In Tables 3.4, 3.5 and 3.6, the values displayed in the same columns were obtained by

calculating the mean values between each pair of nodes belonging to the same community,

for all communities, and divided by the total number of communities. The values shown in

the diff columns were obtained by summing the metric results between each pair of nodes

belonging to different communities, divided by the total number of possible combinations

between the pairs of nodes belonging to different communities.

Table 3.4 displays the SSIM, MSE and ARI values for the four algorithms studied for

the GeoLife trace. We can observe that the proposed methodology was able to increase

similarities (SSIM > 0.24, MSE < 20.70, and ARI > 0.13) for all the clustering algorithms,

and dissimilarities (SSIM < 0.24, MSE > 20.70, and ARI < 0.13) for most of the algo-

rithms. The K-means and Fuzzy algorithms presented the SSIM and/or ARI metrics that

were slightly lower than the benchmark. The MBC algorithm showed the best results for

all the metrics studied in this trace.

SSIM, MSE and ARI results for the four algorithms studied for the San Francisco

trace are shown in the Table 3.5. In this scenario, the proposed methodology was also

able to increase similarities and dissimilarities when compared to our proposed bench-

mark (see Table 3.3), for all four clustering algorithms. In this trace the MBC algorithm

was slightly better at identifying similarities and dissimilarities between the node com-
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Algorithms SSIM SSIM MSE MSE ARI ARI
Communities (same) (diff) (same) (diff) (same) (diff)
K-means 0.32 0.22 10.58 33.23 0.17 0.12
HC 0.38 0.25 9.25 37.72 0.19 0.13
MBC 0.446 0.27 7.34 38.79 0.24 0.15
Fuzzy 0.27 0.24 14.07 21.41 0.14 0.12

Table 3.4: Performance Evaluation - Geolife Trace

munities. With the exception of the ARI metric, which did not capture any difference

between the clustering algorithms.

Algorithms SSIM SSIM MSE MSE ARI ARI
Communities (same) (diff) (same) (diff) (same) (diff)
K-means 0.962 0.67 0.001 0.088 0.386 0.377
HC 0.965 0.655 0.001 0.086 0.386 0.377
MBC 0.966 0.649 0.001 0.091 0.386 0.377
Fuzzy 0.957 0.698 0.001 0.084 0.386 0.377

Table 3.5: Performance Evaluation - San Francisco Trace

Finally, Table 3.6 displays the comparative results for the statistical metrics in the

Dartmouth trace. In this scenario the proposed methodology was also able to increase the

intra-cluster similarity for all algorithms studied. The MBC algorithm, once again, was

the one that obtained the best results, being the algorithm that was able to meet all the

metrics and overcome the benchmark for all similarities and almost all dissimilarities.

Algorithms SSIM SSIM MSE MSE ARI ARI
Communities (same) (diff) (same) (diff) (same) (diff)
K-means 0.38 0.19 18.60 27.02 0.29 0.18
HC 0.37 0.18 19.4 26.7 0.29 0.17
MBC 0.39 0.17 16.78 23.51 0.29 0.17
Fuzzy 0.27 0.23 22.4 23.4 0.24 0.26

Table 3.6: Performance Evaluation - Dartmouth Trace

3.4.4 Discussion

According to [Xu and Wunsch 2005], the time complexity of the K-means clustering

algorithm isO(NKd) and its storage space complexity isO(N+K), whereN is the num-

ber of d-dimensional vectors and k is the number of clusters. Hierarchical Clustering’s

time and storage space complexities are both O(N2), and Fuzzy C-Means’ complexity

is O(N) [Xu and Wunsch 2005]. Since MBC represents a class of algorithms based on

models, its computational complexity analysis will depend on the details of each model,

but most models present a complexity around O(N2M1), where M1 is the number of
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iterations used for model estimation [Zhong and Ghosh 2003]. Thus, if an application

requires low complexity approaches due to limited processing, storage, and energy capa-

bilities, Fuzzy C-Means and K-means are the most indicated.

Based on our evaluation results, we observe that the MBC algorithm performed best

for all traces evaluated. Consequently, MBC is preferred when accuracy is the main con-

cern. However, K-Means is the most cost/time effective. Finally, if for a given applica-

tion, a node can belong to multiple communities, then Fuzzy clustering would be the best

choice.

3.5 Related Work

Social networks consist of nodes connected by socially meaningful relationships. The

work in [Girvan and Newman 2002] and [Newman 2004] propose techniques to extract

social relationships between users and also their social communities. In community-aware

opportunistic networks, nodes are divided into several communities according to their

relationships. Some works use data mining to detect user interests in certain geographic

areas. For instance, in [Khetarpaul et al. 2011], a method to analyze users’ aggregate

GPS locations, and extract and rank users’ location interests was proposed. In [Zheng

et al. 2009a] GPS user trajectories are also used as a way to mine location interests and

movement trajectories. Similarly, in [Giannotti et al. 2007], sequences of user trajectories

are mined in order to find trajectory patterns and regions of interest.

Our work differs from efforts such as the ones outlined above since we focus on iden-

tifying user user communities based on features such as user geographical preferences

and mobility characteristics.

The work reported in [Eagle and (Sandy) Pentland 2006] is a notable example of an

approach that seeks to recognize social patterns in daily user activity through traces gen-

erated from mobile devices. It explores mobility profile and user behavior to propose a

methodology for community identification based on the similarities found among differ-

ent users. However, they use data from Bluetooth encounters and user location is inferred

from cell tower location, thus losing spatial resolution as well as trajectory information.

Authors in [Ferrari et al. 2011] extract social networking patterns based on users’

location in New York City, using the Twitter application. [Tang et al. 2012] proposes a

method for extracting similarities among users of different social networks, in order to

group them into communities. However, social networks provide information about user

68



location or interests with low granularity, since information is only recorded when users

actually use the social network. For example, uploading images in Instagram, or check-in

using Foursquare.

In [Marbach 2016], a mathematical model to study communities in social networks is

proposed. It is assumed that there is a population of agents who are interested in obtaining

different types of content. The communities are formed in order to maximize their utility

for obtaining and producing content. However, as stated by the authors, the model fails to

capture some properties of information communities that have been observed in practice.

3.6 Conclusions

In this chapter, we proposed a methodology for identifying user communities based

on users’ geographical preferences and mobility attributes, such as speed and pause time.

We hypothesize that users that have similar geographical preferences, e.g., frequent the

same locales for similar amounts of time, have similar interests and could be classified

as belonging to the same community. We show that the proposed methodology is able to

identify similarities and dissimilarities between users belonging to the same and different

communities, respectively.

The proposed methodology includes extracting mobility features from real human

and/or vehicular mobility traces (e.g, obtained through GPS or Wi-Fi technology). It

focuses on datasets that can be easily collected (e.g., through any smartphone), which

eliminates the dependence on information often difficult to obtain, such as data from

mobile operators, online social networks, or demographics.

Overall, the contributions of this work can be summarized as follows: (1) we de-

veloped a methodology for user community identification that relies solely on features

extracted from user mobility traces; (2) we conducted a comparative performance study

of four different categories of clustering algorithms for user community identification;

(3) we validated the proposed methodology using a novel image-based similarity metric

which allows to quantitatively assess the quality of the identified communities.
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4. A Deep Learning Approach for Identifying User
Communities Based on Geographical Preferences and Its

Applications to Urban and Environmental Planning

Understanding human behavior and mobility will play a vital role in urban and envi-

ronmental planning as cities continue to grow. Ubiquitous geo-location and localization

technology and availability of bigdata-ready computing infrastructure have enabled the

development of more sophisticated models to characterize human mobility in urban ar-

eas. In this chapter, our main goal is to extract geographical preference similarities among

users and identify user communities based on such preferences. To this end, we introduce

a novel deep autoencoder framework and use diverse urban mobility datasets to validate

and evaluate our framework. Our experiments show that the proposed deep autoencoder

increases contact times between users belonging to the same community by up to 80%

when compared to the average contact time when not considering community structures

and by up to 150% when compared to user communities extracted from raw datasets, i.e.,

without running data through the autoencoder. Moreover, our approach also increases

contact time between members of the same community from 10% up to 125%, when

compared to an alternate community extraction approach that uses Principal Component

Analysis (PCA) instead. To the best of our knowledge, our proposal is the first to con-

sider Deep autoencoder NNs to perform automatic extraction of non-linear features and

mobility patterns from real mobility datasets.

4.1 Introduction

Currently, about fifty percent of the world’s population lives in urban areas and the

forecast is that by 2050 this percentage will grow to approximately seventy percent [Cal-

abrese et al. 2014]. As such, the greatest wave of city migration is yet to come and

together with it a wide range of challenges raised by the need to improve the style and
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quality of life of a growing urban population. According to [Calabrese et al. 2014], a

better understanding of city dynamics would allow for improved services as well as min-

imized environmental impact resulting from urban expansion.

Urban mobility, defined as the displacement of people across an urban region over

time [Boeing 2017], is critical to understand the dynamics of an urban center. As cities

grow, the complexity of urban transportation and transit systems and the time people

spend in transit will greatly increase. As a result, expanded- and new transportation

services will be required demanding deeper investigation into urban mobility [Louf and

Barthelemy 2014, Albino et al. 2015]. Additionally, understanding human mobility in

urban areas is crucial to other city management and planning applications such as public

health, emergency response, education, entertainment, shopping, etc [Hess et al. 2015a].

As computational resources become more widely available through cloud- and edge

computing services, machine learning techniques, such as neural networks (NNs), which

not too long ago were considered totally prohibitive in terms of their computational de-

mands, have now become mainstream tools to handle the enormous amounts of data being

generated by sensing devices embedded mostly everywhere. A special category of NNs

named Deep autoencoders have been applied in a variety of domains, ranging from data

augmentation, de-noising, activity and speed recognition, computer vision, to name a

few [Liu et al. 2016].

In this work, we explore deep autoencoder architectures applied to learning user geo-

graphical permanence patterns in a variety of urban scenarios. Our main goal is to be able

to extract geographical preference similarities among users and identify user communities

based on such preferences. To this end, we introduce a novel deep autoencoder framework

and use diverse urban mobility datasets to validate and evaluate our framework. Our ex-

periments show that the proposed deep autoencoder increases contact times between users

belonging to the same community by up to 80% when compared to the average contact

time when not considering community structures and by up to 150% when compared to

user communities extracted from raw datasets, i.e., without running data through the au-

toencoder. Moreover, our approach also increases contact time between members of the

same community from 10% up to 125%, when compared to an alternate community ex-

traction approach that uses Principal Component Analysis (PCA) [Bishop and Nasrabadi

2007] instead.

To the best of our knowledge, our proposal is the first to consider Deep autoencoder

NNs to perform automatic extraction of non-linear features and mobility patterns from

real mobility datasets.
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4.2 Background and Related work

This section reviews previous work on mobility characterization as well as presents a

brief overview of autoencoders and our rationale for using them to extract features from

raw user mobility datasets.

4.2.1 Mobility Characterization

In recent years, the wide availability of localization devices and techniques, such as

the Global Positioning System (GPS), cellular base-station and Wi-Fi positioning sys-

tems have enabled human mobility data to be captured and recorded. The availability of

such positioning data not only enabled a variety of services and applications including

road navigation, intelligent transportation systems, ride sharing, etc, but also motivated a

large body of research on user mobility characterization and modeling. Below, we briefly

describe some examples.

User mobility was found to be highly predictable and largely independent of the dis-

tance users cover on a regular basis [Song et al. 2010b], where most users visit the same

places and share the same probability density function for places visited [Gonzalez et al.

2008]. Additionally, the probability of a user to visit new locations or returning to previ-

ously visited locations follows a scaling law pattern, i.e., the probability of users visiting

a new place decreases over time, while the chances of returning to places they frequently

visit increases. Also, it is well known that members of the same social group also present

similar mobility behavior [Eagle and Pentland 2006]. Moreover, human mobility exhibits

strong non-linear dynamics and hence can not be described by linear stochastic mod-

els [Domenico et al. 2013].

The study of movement patterns has applications in a wide range of fields, such as ur-

ban planning [Bastani et al. 2011,Nair et al. 2013,Zheng et al. 2014], identify similarities

among individuals [Zheng et al. 2009b,Siła-Nowicka et al. 2016], evaluating and propos-

ing mobile network protocols [Ferreira et al. 2018, Hong et al. 2010], predicting health

condition [Mehrotra and Musolesi 2018, Canzian and Musolesi 2015], among others.

More recently, machine learning has been used to identify patterns within large-scale,

high-dimensional mobility data [Toch et al. 2019, Zheng et al. 2014]. Most of the

work to-date uses supervised learning to map data instances to labels and predict new,

unlabelled data. However, much of the data available from positioning technologies is

not labelled (e.g., GPS records).
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Most efforts based on unsupervised learning use clustering algorithms to group in-

stances that have similar behavior [Khoroshevsky and Lerner 2016,Zhu et al. 2014,Zheng

2015, Toch et al. 2019]. Clustering has been extensively explored in machine learning

and data analytics. It tries to organize data observations into groups with similar fea-

tures, and its performance highly depends on the quality of the input data [Aljalbout et al.

2018, Min et al. 2018]. However, these works do not consider the design of non-linear

feature extraction, neither pre-processing and data transformations before clustering the

data. Unfortunately, the expressive power of linear features is very limited: they cannot

be stacked to form deeper, more abstract representations since the composition of linear

operations yields another linear operation [Bengio et al. 2012].

Our work addresses this gap by using autoencoders to automatically learn from non-

linear data representations, which can be stacked into deeper networks to better map input

data into a feature space with improved data representation for clustering. As it will

become clear from our experimental results, the ability to adequately represent non-linear

features as well as the pre-processing transformations on the raw positioning data are

crucial steps towards extracting valuable and meaningful mobility features from available

human mobility datasets.

4.2.2 Deep Autoencoders

Deep learning (DL) models have been widely employed in recent years by researchers

and practitioners to solve a plethora of different problems in many areas [LeCun et al.

2015, Bengio et al. 2012, Liu et al. 2016]. In the literature, it is possible to find DL ar-

chitectures that fit specific purposes. For example, the use of U-Nets in medical imaging

segmentation problems in [Ronneberger et al. 2015], the use of Convolutional Neu-

ral Networks (CNNs) for semantic segmentation and image classification and recognition

problems [Krizhevsky et al. 2012,Yu et al. 2017a,Wang et al. 2017,Long et al. 2015], ap-

plication of Fully Connected (FC) neural networks for regression and classification prob-

lems [Rocha et al. 2007], Generative models for style transfer and data augmentation [Yu

et al. 2017b, Antoniou et al. 2017, Reed et al. 2016], and Recurrent Neural Networks

(RNNs) applied to sequential and temporal data analysis [Ziat et al. 2017, Graves et al.

2007, Cho et al. 2014, Che et al. 2018, Young et al. 2018], to name a few.

Most examples mentioned above are applied to supervised learning problems, where

there are labels or ground truth (GT) values that can be used to train neural networks to be

able to identify such labels automatically. While autoencoders (AE) are also an example

of DL architectures, they can be applied to problems where a supervised approach is not
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possible, e.g., where there are no labels or GTs.

Identifying user community structures from raw mobility data requires unsupervised

learning approaches since, most of the time, there is no previous knowledge from these

raw records about the nature of the relationship between users, whether they belong to

certain communities, etc. Principal Component Analysis (PCA) [Bishop and Nasrabadi

2007] is a class of algorithms that has been widely used for unsupervised learning prob-

lems, especially for dimensionality reduction. PCA applies linear transformations to the

data, rotating axis on the directions of where the data presents the higher variability. This

way, it is possible to describe most of the variability in the data with only a few variables,

instead of using the raw higher-dimensional data. Autoencoders are another well known

class of algorithms that can be applied to unsupervised representation learning and has

been used in a number of applications, such as pattern identification and dimensionality

reduction [Charte et al. 2018]. One of our the main reasons behind applying AEs to our

work, instead of PCA, is the non-linear nature of the activations on the output of the AE

layers [Wetzel 2017]. Our hypothesis was that AEs are able to capture non-linearities

intrinsic to the data, that PCA cannot represent, given its linear nature.

An AE is a neural network architecture designed to learn data encodings in an unsu-

pervised fashion. As mentioned before, it is typically used for dimensionality reduction,

where the complexity and variability of the data is reduced into an encoded, more compact

representation. Along with data reduction, there is also a reconstruction step that tries to

reconstruct a representation as close as possible to the original input. In other words, the

AE takes a set of unlabeled data x ∈ Rn and tries to learn an approximation to the identity

function to force the output to be as similar as possible to the input.

Autoencoders consist of three basic general components: (1) the encoder, that is the

portion before the most compressed layer (or code) of the architecture. It compresses

the input vector x into a latent representation h using a weight matrix ω; (2) the code,

h, or latent space representation, is a lower-dimensionality representation of the input.

This reduced representation allow us to discover interesting structures about the data; and

(3) the decoder, the portion after the code, maps h back to the input, reconstructing it to

obtain x ′ with another weight matrix ω ′. Parameter optimizations are used to minimize

the average reconstruction error between x and x ′. Usually, the input and output layers

have the same dimensionality.

Training the network means learning the weight matrix ω ′ associated with all the

neurons in the network. The basic unit of computation in a neural network is the neuron,

often called a node or unit. During the training, each unit located in any layer in between
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input and output layers, also called hidden layers, receives several inputs from the pre-

ceding layer. The unit computes the weighted sum of these inputs and eventually applies

an activation function, to produce the output. The most popular activation functions are

Linear, Logistic, ReLU, SELU, and Tanh. The non-linear behavior of neural networks

comes from the choice of these activation functions. After these steps, the output x ′ is

compared to the input x, and the error will be propagated to every individual unit using

the back-propagation algorithm [LeCun et al. 2015]. Finally, each weight’s contribution

to the error is calculated and the descendent algorithm is adopted to adjust the parameters

at each layer (i.e., update the weights). A typical loss function is the mean squared error

or cross-entropy, when input values are binary or modeled as bits.

Another category of neural network that is widely used for image processing tasks is

the convolutional autoencoder (CAE). CAEs are designed to process data inputs in the

form of multidimensional arrays, e.g. images composed of 2D arrays containing pixel

intensities in color channels. Some examples of data inputs are: 1D signals and time

series, 2D for images and 3D for video or images. CAEs use the same principle as the

traditional autoencoders discussed above, but instead of fully-connected layers, it contains

convolutional layers in the encoder part and deconvolution layers in the decoder part.

CAE architectures are structured in several stages of convolutional and pooling lay-

ers [Sze et al. 2017]. The units in a CAE are organized in features maps, also known

as convolutional filters, that are connected through a set of weights between the layers.

Again a non-linearity activation function, such as ReLU, is passed through the weights.

In this way, CAEs are able to detect local groups of values in an array of images that are

often highly correlated, and also detect spatial invariance patterns. In other words, if a

pattern is identified in a part of an image, it could appear also in other parts. Hence, the

convolutional layer is responsible for detecting patterns from the previous layer, and the

pooling layer for merging semantically similar features to one. In CAE, the pooling layer

is responsible for reducing the dimension of the representation and creating an invariance

to small shifts and distortions on the images. Usually, CAEs contain two or three stages of

convolutional layers, non-linearity and pooling stacked, followed by more convolutional

and/or fully-connected layers. The back-propagation algorithm is also used to training

CNNs [LeCun et al. 2015].

The vast majority of applications of convolutional neural networks focus on image

data, and so does the present work. Different from previous work, our proposed method

is based on convolutional autoencoders, applied to extract features from real mobility data

and identifying communities automatically.
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4.3 Deep Learning Assisted User Community Identification

This section presents our proposed approach for extracting mobility patterns from

GPS and Wi-Fi raw data using deep autoencoder models and clustering algorithms. Fig-

ure 4.1 summarizes the steps involved in the methodology. It also presents the key el-

ements needed to the design of such approach, which will be described in detail in the

subsections below.

Figure 4.1: The proposed community structure identification methodology illustrating all
its components and data-flow.

4.3.1 Proposed Methodology

The Data Pre-processing steps to compute the mobility features for training the net-

work by using the mobility traces, work as follows:

(Step 1) Cell Definition - Divide the geographical region in small parts, containing all

the users as they move around into the cells. Cell division is described in more details in

Section 4.4.1.

(Step 2) Feature Matrix Computation - Compute the user spatio-temporal features

by defining a feature matrix consisting of N rows and and C columns, where N is the

number of users and C the number of cells present in the dataset. Each position in the

feature matrix FM(i, j) contains the average time which user i spent in cell j.

(Step 3) Logit Transformation - Apply the Logarithmic Likelihood Logit [Jaeger 2008]

nonlinear transformation in the matrix FM(i, j) to normalize the data. This step is impor-

tant in order to evidence the similarities between each user.

(Step 4) Feature Image Generation - Generate an image for each node, by reshaping

the mobility feature matrix into a 2D-image. For constructing this image, we simply

take each position of the feature matrix as a pixel, and the values of each position is the
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intensity of that pixel. The size of the images are described in Section 4.4.1.

The encoding of features towards extracting user mobility features using deep-autoencoder

consists of the following steps:

(Step 5) Deep Autoencoder Architecture - Construct the deep autoencoder architecture

for each trace. Section 4.4.1 are detailed the parameters. It is not possible to train a single

architecture for general use, since the models depend on the size of the input, and it varies

with the application scenario (i.e., the size of the area, number of cells and feature matrix

changes from scenario to scenario).

(Step 6) Deep Autoencoder Training - Train the deep autoencoder by using the input

image representation obtained from the mobility features described above. In this work

we trained three different autoencoders architectures in order to compare their impact on

the experiments results.

(Step 7) Extract Encoded Latent Features - Once the network is trained, extract the

reduced features from the autoencoder latent representation space. These features can be

used to make predictions, and comparing the original input with the reconstructed image.

The size of the reduced feature space depends on the autoencoder architecture and on the

dataset. Section 4.4.1 presents the latent space size for all architectures and the 3 datasets.

We than cluster the latent variables from the autoencoder as follows:

(Step 8) Encoded Latent Features as input - Use the reduced latent feature representa-

tion obtained from Step 7 as input for the MBC clustering algorithm;

(Step 9) Extract community labels from MBC - Extract the community labels for every

user from the MBC results;

(Step 10) Apply t-SNE technique for clusters visualisation. Apply t-SNE to reduce

the extracted feature to a 2D plan for cluster vizualization.

Finally, we compute our evaluation metrics for measuring the spatio-temporal impact

of the final clustering;

(Step 11) Compute the Spatial Evaluation Metrics - Use the similarity metrics to com-

pute the quality of the cluster obtained in Step 9. Compute the MSE, ARI and SSIM index

for each pair of images of nodes trajectories generated at Step 4. Compare the similari-

ties metrics average for all node pairs belonging to the same community and belonging

to different communities. We expect to see higher average similarity metrics (e.g., SSIM

and ARI) between nodes belonging to the same community and higher average dissim-

77



ilarity metrics (e.g., MSE that computes the difference between two samples) for nodes

belonging to different communities. The similarity metrics are described in Section 4.4.3.

(Step 12) Compute the temporal evaluation metric - Compute the contact time between

users belonging to the same and different communities, also based on the labels obtained

in Step 9. We compute the average total time spent together in the same cell for pairs

of nodes belonging to the same community and different communities. We expect to see

higher contact time values between nodes from the same communities and lower values

for nodes belonging to different communities.

Figure 4.2 summarizes proposed mobility characterization approach based on a 2D

deep autoencoder architecture consisting of four parts: (I) Input of pre-processed data

(II) training the model and making predictions, (III) clustering the code (IV) spatial and

temporal computation. This figure shows the architecture for Conv/Dense model with

parameters of GeoLife trace, as described in Section 4.4.1.
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Figure 4.2: The architecture of the proposed deep autoencoder for GeoLife. There are
three convolutional layers followed by a fully connected layer. The embedded layer is
composed by only 8 neurons. Then a three deconvolutional layers reconstruct the Input.
The 8 embedded features represent the encoding of the inputs and are used as input for the
MBC clustering. The node’s contact time within a cell is obtained from clusters labels.

4.3.2 Clustering the embedded layer

Two of the most popular feature-based clustering methods are K-means and Gaussian

Mixture Model (GMM) [Jiang et al. 2017]. K-means updates the cluster centroids, by
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minimizing the within-cluster sum of squared errors, to generate K clusters, which are

represented by the centroids. Another representative of model-based clustering is GMM

which assumes that the original data consists of several Gaussian distributions. Data

obeying the same independent Gaussian distribution is considered to belong to the same

cluster [Xu and Tian 2015].

In this work we applied the Model-Based Clustering (MBC) for detecting the commu-

nity structures from the data samples. MBC is a representative of a probabilistic model

approach for data clustering that models the density function by a probabilistic mixture

model. This method assumes that the data is generated by a mixture distribution and the

clusters are defined by one or more mixture components [Dasgupta and Raftery 1995].

Each cluster, can be modeled by a Gaussian distribution that has three parameters: mean

vector, covariance matrix and an associated probability in the mixture, where each point

has a probability of belonging to each cluster. The Expectation-Maximization (EM) algo-

rithm, initialized by hierarchical model-based clustering, is often used for estimating the

parameters of the model, where clusters are centered at the mean value, and the geometric

features (shape, volume, and orientation) are given by the covariance matrix.

The MBC consists of three main steps: (1) During initialization, it is necessary to

specify the number of clusters and randomly initialize the distribution parameters for each

group. The agglomerative hierarchical clustering is used to obtain the initial partitions of

the data. (2) Then, compute the probability that each data point belongs to a particular

cluster. (3) Application of the EM (Expectation-Maximization) algorithm, which is based

on a maximum likelihood estimate, used to estimate the likelihood of the mixture param-

eters. (3) Finally, once the covariance matrix of the components lead to different models,

the BIC technique (Bayesian Information Criterion) is used to choose the best model.

Model-Based Clustering (MBC) has linear complexity and attempts to deal with a

more arbitrary shaped clusters. Due to the standard deviation parameter, the clusters can

take on any ellipse shape, rather than being restricted to circles. This solve problems

found in hierarchical and k-means algorithms, which tend to produce spherical and same

size groups.

4.3.3 Visualizing data structure with t-SNE

t-SNE (t-Distributed Stochastic Neighbor Embedding) is a commonly used technique

for the visualization of high-dimensional data in scatter-plot [Van Der Maaten 2014]. The

technique aids in visualizing high-dimensional data by giving each data-point a location

in a two or three low-dimensional data representation in such a way, that nearby points
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correspond to similar objects and that distant points correspond to dissimilar objects. It

aims to preserve as much of the significant structure of the high-dimensional data as

possible in the low-dimensional data.

Other techniques, such as Principal Components Analysis (PCA), also aims to pre-

serve such structure. The difference between the two is that they differ in the type of

structure they preserve. PCA is a linear technique, which keeps the low-dimensional rep-

resentations of dissimilar data-points far apart. On the other hand, t-SNE is a non-linear

technique that keep the low-dimensional representations of similar data-points close to-

gether. t-SNE is also capable of revealing global structure such as the presence of clusters

in the data.

t-SNE computes an NxN similarity matrix in both the original data high dimension

and in the low-dimensional latent space. The similarity matrix contains the probabilities

given by a Student-t distribution between two data-points, where high probability means a

pair of similar objects and low probability a pair of dissimilar ones. The low-dimensional

embedding is learned by minimizing the Kullback-Leibler divergence between the proba-

bility distributions, in the original high dimensional and the low-dimensional data space,

with respect to the locations of the points in the latent.

4.4 Experimental Methodology

We performed experiments on three mobility datasets to evaluate the performance of

the proposed autoencoder architecture and other variants of autoencoders as well as PCA.

The datasets we used in our experiments are described in Section 4.4.1. The setup of our

experiments is presented in Section 4.4.2, and the evaluation metrics in Section 4.4.3.

4.4.1 Experimental Datasets

The experiments were performed on three datasets selected to represent different mo-

bility scenarios: (1) GeoLife, (2) San Francisco cabs, and (3) Dartmouth. We briefly

describe each of the datasets as well as the pre-processing applied on them.

4.4.1.1 Geolife dataset

The GeoLife trace, refers to mobility in various scenarios in the city of Beijing, in-

cluding different modes of transportation (e.g. walking, cycling and driving) [Zheng et al.

2010]. The trace contains GPS trajectories of 182 users, collected over a period of three

80



years and sampled every 5 seconds. The user trajectory is represented in the dataset

by a sequence of latitude and longitude set of coordinates over time, containing 17,621

trajectories, over 50,000 hours. The user trajectories are recorded in latitude-longitude

geographical coordinates. We converted the geolocation coordinates to two-dimensional

UTM Cartesian coordinates [Langley 1998]. A 2D-image was generated for each node,

where each position of the matrix is a pixel. The 182 images in this dataset have 15 x 23

= 345 pixels, which corresponds to the number of cells for this trace. The values of the

feature matrices were individually normalized so that the values of the pixels for every

user would remained between 0 and 1. These images with normalized pixel values were

used as input for training our architectures. All architecture were trained for 1000 epochs

on the same dataset.

To extract features from the images for this dataset, we trained three different autoen-

coder architectures:

(1) Dense: fully connected network with five dense layers on the encoder part and five

symmetric dense layers to reconstruct the input. This network has the following structure:

the five encoding layers contain 512, 256, 64, 32 and 16 units, respectively. The latent mid

layer is composed by an 8-unit feature vector that is used as input for the MBC clustering

algorithm.

(2) Conv: convolutional network with four 2D convolutional layers on the encoder

and four 2D convolutional layers to reconstruct the input. This network has the following

structure: the four convolutional layers contain 128, 64, 32 and 16 filters of size (3x3).

The latent layer contain 1 filter of size 3x3. We used the output of the activation in the

middle layer, of shape [1, 2] as input features for the clustering algorithm.

(3) Conv/Dense: convolutional network with three 2D convolutional layers on the

encoder, followed by a fully-connected layer in the latent space, and three simetric 2D

convolutional layers to reconstruct the input. This network has the following structure:

the three convolutional layers contain 128, 64 and 32 filters of size (3x3), strides over

2x2-pixel regions, respectively. The latent layer contains a flatten fully-connected layer

with 8 units. The reshape image has size N = 1 x 2 and 128 filters. This leads to feature

representations of dimensionality D = 8, which were used as input into the clustering

algorithm.

4.4.1.2 San Francisco dataset

The San Francisco trace is a vehicular trace and consists of GPS trajectories of 483

cabs in the City of San Francisco, USA [Piorkowski et al. 2009]. It was collected during
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24 days with intervals between sample positional records ranging from 1 to 3 minutes.

Similar to GeoLife trace, we generated an image for each node. The 425 images in this

dataset have 12 x 58 = 696 normalized pixels. The number of epochs for training was set

to 500.

To extract features from these images, we also trained three different autoencoder

architectures:

(1) Dense: Same as GeoLife.

(2) Conv: convolutional network for San Francisco trace has the same architecture as

described above for GeoLife trace except for the activations in the middle of the convo-

lutional layers that have shape [1, 7]. This layer was again, used as input features for the

MBC clustering algorithm.

(3) Conv/Dense: network architecture is the same as GeoLife Conv/Dense architecture

described above.

4.4.1.3 Dartmouth dataset

This dataset is a Wi-Fi association trace from the Dartmouth College campus’ WLAN

[Kotz et al. 2009]. The trace logs user access to Dartmouth College’s campus WLAN

using Access Point (AP) association and disassociation events. It has 6,524 users over

60 days. In this dataset the location of a user was set to the location of the access point

to which the user was associated at the time. We worked with a subset of this dataset,

with only the busy days where the larger number of APs were active. After filtering, this

dataset allowed 2004 images (one for each active user) with 26 x 18 = 468 normalized

pixels. To extract features from these images, we also trained three different autoencoder

architectures:

(1) Dense: It has the same architecture as Geolife.

(2) Conv: It has the same architecture as San Francisco, except for the number of

filters in each layer. The values of the filters are 128, 64, 8 and 4 with size 2x2. The latent

layer contains 1 filter of size 2x2, leading to a shape of [1, 2] after activations, to be used

as input for the clustering algorithm.

(3) Conv/Dense: It has the same architecture as GeoLife and San Francisco traces

except for the parameters. The parameters for the three convolutional layers are 128, 256

and 16 filters of size (2x2) and strides equal to 2x2. The encoded latent vector used as

input to the MBC is the output of the activations of the fully-connected layer with 8 units.
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For all experiments the activation function used for all layers was the Rectified Lin-

ear Unit (ReLU), except the activation function on the output layer, which is linear. All

the networks for all traces were trained to minimize mean square error and the optimizer

function was Adam. The batch size was set to be the same as the number of image sam-

ples, i.e., 182 for GeoLife, 425 for San Francisco, and 2004 for Dartmouth. The training

error and number of parameters of the obtained network, and the time elapsed during the

training are shown in Table 4.3.

4.4.2 Experimental Setup

We ran experiments with three different types of pre-processing: (1) Raw data - where

we used the feature matrix without any pre-processing as input for the MBC clustering

algorithm , i.e., only the cell user time, as defined in Section 4.3-Step-2, is considered. (2)

PCA - experiments feed the clustering algorithm with transformed feature matrix data by

applying dimensionality reduction technique using principal component analysis (PCA).

The transformed feature matrix contains the first eight principal components values. (3)

Autoencoder - transforms the feature matrix by applying the three autoencoder architec-

tures detailed in Section 4.4.1, before clustering and t-SNE are performed.

In all experiments, the t-SNE technique was used for visualizing the clusters. The

perplexity parameter [Van Der Maaten 2014] used to compute the input similarities varied

from 5 to 25. Dartmouth dataset was set to be 5, and GeoLife and San Francisco to be 25.

Typical values for this parameter are reported in [Van Der Maaten 2014] to be between 5

and 50.

The computation time presented in Table 4.3 were measured on a laptop computer

with an 2.0 GHz quad-core Intel Core i7 processor and 8 GB of memory.

4.4.3 Evaluation Metrics

In this section we proposed a validation method based on a number of metrics, that

reflect not only how well our method depicts spatial similarities, but also temporal. The

images generated from the mobility trace extracted features reflect the actual user dis-

placement in the studied scenarios and thus indicate the user movement patterns. If we

compare the trajectories of different pairs of users we will have a measurement of the

similarities for each pair. Then, we compared the image pairs of users belonging to the

same cluster and to different clusters, using three image comparison metrics, in order to

verify if our method was able to group users that share similar movement patterns.
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There are few methods that can be used to find how similar two images are. The sim-

plest quality metric is the mean square error (MSE), computed by averaging the squared

differences in the intensities between the pixels of two images. However, two images with

the same MSE may have different types of errors. Structural SIMilarity (SSIM) [Wang

et al. 2004] Index identifies the information structures found in the images and there-

fore appears as a better alternative to the previous method. A third metric to evaluate

the clustering results of the proposed method is Adjusted Rand Index (ARI) [Santos and

Embrechts 2009]. ARI is the corrected-for-chance version of the Rand Index, which mea-

sures the percentage of decisions (cluster assignments of all pair of users) that are made

correctly.

Image quality comparison metrics work in our case as similarity indexes for spatial

displacement, since the images we use as input for our proposed method, can be seen as

heat-maps of each user’s geographical preferences (i.e., time spent at a given location).

Analogously, we seek to establish, rather then a spatial, also a temporal relationship metric

to validate the proposed method. We argue that users belonging to the same group would

spend more time together, as they would share similar interests, routes and geographical

preferences, even though we only used data about users’ individual geographical prefer-

ences in order to form groups. In this way, we calculate the encounter, or contact time

between two nodes, visiting the same cell (i.e., sharing the same location at the same

time), in a real trace. In other words, we summed for all nodes the duration of the en-

counters between all users present in the same cell at the same time. We then observed

the total time spent together for members of the same group, and for members of different

groups. The results are presented in next section.

4.5 Results

Figure 4.3 shows the output of the clustering step after applying t-SNE for visualiza-

tion. It plots clusters for the three mobility datasets using three pre-processing/feature

encoding methods, namely: Raw Data (i.e., no dimensionality reduction applied before

clustering), PCA, and autoencoder. The results presented for the autoencoder approach

were obtained using the Conv/Dense architecture. No significant visible differences were

observed in the clustering visualization amongst the different autoencoder architectures.

As discussed before, one of the motivations behind applying autoencoders before clus-

tering was the non-linear nature of the activations. The hypothesis was that the autoen-

coders would be able to represent non-linearities intrinsic to the data that PCA could not
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represent, given its linear nature. It is clear that the clusters become increasingly distinct

as the linear and non-linear pattern identification techniques are performed and the best

visual results are achieved when using autoencoders.

(a) GL - No reduction (b) GL - PCA (c) GL - Autoencoder

(d) SF - No reduction (e) SF - PCA (f) SF - Autoencoder

(g) DT - No reduction (h) DT - PCA (i) DT - Autoencoder

Figure 4.3: Clustering visualization after applying t-SNE for raw data, reduced data with
PCA, and latent representation by Conv/Dense autoencoder architecture using GeoLife
(GL), San Francisco (SF), and Dartmouth (DT) mobility datasets.

Figure 4.4 visualizes the matrices of pairwise SSIM values ssimij between nodes

i and j, computed after considering the labels attributed to each user by our proposed

methodology when using raw data, PCA, and autoencoder. The values of the 3 matrices

computed for each dataset (i.e., each line of Figure 4.4) are in fact the same for all 3

images. What changes from image to image, for a specific dataset, is the reordering of

the matrix rows and columns. Each matrix for each dataset has their rows and columns

reordered and sorted according to their group labels (i.e., labels defined by the clustering

algorithms) as they were rearranged in a way that nodes belonging to the same community

are shown together in the matrices. In the figure, the brighter the color, the higher the

similarity (i.e., SSIM value close to 1), whereas darker colors indicate lower similarity.

We expect to see brighter colors along the main diagonal, as nodes belonging to the
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same community tend to have similar geographical preferences and as a result, a higher

SSIM similarity metric among them. We find however, bright regions showing high simi-

larity between different communities. This only means that sometimes, nodes of different

communities can have also similar preferences. These interesting patterns reveled by

the SSIM matrices can be interpreted as relationships between the different communities

identified.

The noisier and less structured the patterns in the images, the less efficient in sep-

arating similar spatial preferences the method is. We can observe that images (a), (d)

and (g), generated by applying clustering over the raw data, are the noisiest of them all,

which means they are the less structured ones. Overall, cluster separation is more distinct

when using the autoencoder and raw data yields less distinct clusters. The goodness of the

method becomes visually more evident specially when looking at SF-Autoencoder results

in Figure 4.4(f), where the different regions with different colors are much more evident

and well defined when compared to the images resulting from the PCA and Raw Data.

For these last two, we can still see more noisy and not well defined structured regions

of SSIM values for different communities. PCA also represents better structures in these

matrices when compared to Raw Data, however quantitative metric results will show that

autoencoder is able to differentiate better the communities, not only in terms of spatial

behavior, but temporal as well. We discuss this further below.

Quantitative metrics can help us better understand differences between each pattern

identification approaches. Table 4.1 shows the performance of different data transforma-

tion methods. The table presents results for the three similarity metrics that are SSIM,

MSE and ARI for GeoLife, San Francisco and Dartmouth mobility datasets. The results

are shown in absolute values of similarity and also as the percentage difference in rela-

tion to clustering users using simply the raw data. Raw data clustering is then used as

the baseline for assessing the quality of the clustering methodology and it only slightly

and marginally improves the metrics when comparing to the metrics computed without

considering community structures (i.e., no cluster). We observe that despite of the fact

that PCA presents good results in some metrics, the autoencoder Conv/Dense architecture

outperforms it in most metrics for all datasets.

In order to study the temporal impact of the groupings generated by the different meth-

ods of mobility patterns extraction, Table 4.2 presents results for the mean total time users

spend together in a cell. We call this metric contact time. Table shows mean total time

spent together and, CImin and CIMax represents lower and upper bounds respectively for

a 95% confidence interval.
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(a) GL - Raw Data (b) GL - PCA (c) GL - Autoencoder

(d) SF - Raw Data (e) SF - PCA (f) SF - Autoencoder

(g) DT - Raw Data (h) DT - PCA (i) DT - Autoencoder

Figure 4.4: Similarity for each pair of nodes sorted by label groups, computed using the
SSIM metric for GeoLife (GL), San Francisco (SF), and Dartmouth (DT) datasets. Yellow
color shows high similarity and dark green low ones.

As we can see in Table 4.2, the Conv/Dense architecture presents results that are up to

85% better in relation to non-clustering, showing that the community detection method,

when using Conv/Dense architecture, is able to extract community structures where the

nodes belonging to the same community actually and consistently (i.e., for all datasets

studied) spend more time together in the same location. On the other hand, nodes that do

not belong to the same community tend not to meet, and the Conv/Dense architecture also

managed to decrease contact time for members of different communities.

After presenting the results obtained in which the Conv/Dense architecture outper-

forms the alternatives in most metrics for all datasets, an analysis of computational com-

plexity was performed by measuring the Time elapsed for training, training Loss and total
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SSIM SSIM MSE MSE ARI ARI
(same) (diff) (same) (diff) (same) (diff)

GL - No Cluster 0.1264 (-) - 0.1074 (-) - 0.1140 (-) -
GL - Raw Data 0.1342 (-) 0.1861 (-) 0.1041 (-) 0.0600 (-) 0.1515 (-) 0.1429 (-)
GL - PCA 0.2512 (87%) 0.0862 (54%) 0.0683 (34%) 0.1512 (152%) 0.1942 (28%) 0.0662 (54%)
GL - Dense 0.2266 (69%) 0.1199 (46%) 0.0776 (25%) 0.1159 (93%) 0.1866 (23%) 0.0820 (43%)
GL - Conv AE 0.2372 (77%) 0.0959 (49%) 0.0688 (34%) 0.1349 (124%) 0.1882 (24%) 0.0971 (32%)
GL - Conv/Dense 0.2784 (107%) 0.0860 (54%) 0.0687 (34%) 0.1297 (116%) 0.2120 (40%) 0.0816 (43%)

SF - No Cluster 0.7632 (-) - 0.0347 (-) - 0.1501 (-) -
SF - Raw Data 0.7826 (-) 0.7074 (-) 0.0342 (-) 0.0392 (-) 0.1674 (-) 0.1579 (-)
SF - PCA 0.8747 (12%) 0.7147 (1%) 0.0159 (54%) 0.0473 (21%) 0.1640 (2%) 0.1498 (5%)
SF - Dense 0.9528 (22%) 0.7860 (11%) 0.0010 (97%) 0.0301 (23%) 0.1618 (3%) 0.1521 (4%)
SF - Conv 0.9517 (22%) 0.7370 (4%) 0.0008 (98%) 0.0416 (6%) 0.1637 (2%) 0.1455 (8%)
SF - Conv/Dense 0.9545 (22%) 0.7254 (3%) 0.0008 (98%) 0.0410 (5%) 0.1649 (1%) 0.1444 (9%)
DT - No Cluster 0.2018 (-) - 0.0198 (-) - 0.1804 (-) -
DT - Raw Data 0.2898 (-) 0.1813 (-) 0.0180 (-) 0.0198 (-) 0.2116 (-) 0.1708 (-)
DT - PCA 0.3242 (12%) 0.1652 (9%) 0.0161 (11%) 0.0202 (2%) 0.2435 (15%) 0.1569 (8%)
DT - Dense 0.3120 (8%) 0.1931 (6%) 0.0166 (11%) 0.0207 (4%) 0.2444 (15%) 0.1734 (2%)
DT - Conv 0.3419 (18%) 0.1829 (1%) 0.0158 (12%) 0.0204 (3%) 0.2484 (17%) 0.1709 (1%)
DT - Conv/Dense 0.3580 (24%) 0.1625 (10%) 0.0157 (13%) 0.0202 (2%) 0.2634 (24%) 0.1505 (12%)

Table 4.1: Performance evaluation using the three different metrics, SSIM, MSE, and
ARI, for the three studied autoencoder architectures and data transformation, using MBC
clustering on Geolife (GL), San Francisco (SF), and Dartmouth (DT) datasets.

number of parameters of each autoencoder architecture and for each dataset analyzed.

Thus, as we can see in Table 4.3, the Time elapsed and Training Loss metrics for the

Conv/Dense architecture are smaller than the ones measured for Conv architecture, even

when the total number of network parameters was larger, as it was the case for the GL

and DT datasets. In this way, the performance of the Time elapsed metric demonstrates

the feasibility of using the our proposal in the identifying communities applied on smart

mobility applications for urban and environmental planning.

4.6 Discussion and Application

An important characteristic of smart mobility applications such as Lime, Bird, Scoot,

Lyft, and Uber-owned Jump is that users can either pick up or drop off equipment any-

where in the city. Attending to the needs of groups of users that share the same mobility

pattern allows for (1) increasing the efficiency equipment usage (more shared bicycles/s-

cooters available by certain route) and (2) reducing expenses with equipment relocation,

by the equitable placement of shared vehicles.

Recently, some cities experimented issues with such vehicles (bikes/scooters) block-

ing sidewalks and building entrances, causing accidents (e.g., people tripping on scooters)

and making public spaces less accessible to children and people with disabilities. The

mobile pattern extracted by the proposed method may be used in the decision-making of

where to make shared mobility equipment available. Therefore the application can make
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Mean CImin CIMax # contacts
GL No cluster 4024842 3615976 4433707 32037
GL - Raw Data Same 2863731 (-) 2312482 (-) 3414981 (-) 17432

Diff 5410701 (-) 4801901 (-) 6019501 (-) 14605
GL - PCA Same 4795244 (67%) 3672235 (59%) 5918253 (73%) 5470

Diff 3863132 (-29%) 3428206 (-29%) 4298059 (-29%) 26567
GL - Dense Same 6165288 (115%) 4856236 (110%) 7474340 (119%) 4962

Diff 3632565 (33%) 3212565 (-33%) 4052565 (-33%) 27075
GL - Conv Same 5361019 (87%) 4298002 (86%) 6424036 (88%) 4470

Diff 3872740 (-28%) 3429318 (-28%) 4316162 (-28%) 27567
GL - Conv/Dense Same 7175820 (151%) 5644526 (144%) 8707115 (155%) 4308

Diff 3535303 (-35%) 3127447 (-35%) 3943159 (-35%) 27729

SF No cluster 236227 230051 242404 176820
SF - Raw Data Same 226120 (-) 217844 (-) 234398 (-) 90246

Diff 246763 (-) 237561 (-) 255966 (-) 86574
SF - PCA Same 238084(5%) 223890 (2%) 252279 (7%) 35454

Diff 235762 (-4%) 228905 (-4%) 242618 (-5%) 141366
SF - Dense Same 244589 (8%) 229042 (5%) 260136 (10%) 28020

Diff 234653 (-5%) 227923 (-4%) 241383 (-6%) 148800
SF - Conv Same 251571 (11%) 240800 (11%) 262342 (12%) 65842

Diff 227124 (-7%) 219641 (-7%) 234608 (-8%) 110978
SF - Conv/Dense Same 259195 (14%) 243613 (12%) 274777 (17%) 33792

Diff 230801 (-6%) 224112 (-6%) 237490 (-7%) 143028

DT No cluster 1006 985 1027 4018020
DT - Raw Data Same 1129 (-) 1075 (-) 1183 (-) 635442

Diff 983 (-) 960 (-) 1006 (-) 3382578
DT - PCA Same 1399 (24%) 1335 (24%) 1463 (24%) 581186

Diff 940 (-4%) 918 (-4%) 962 (-4%) 3436834
DT - Dense Same 1493 (32%) 1432 (32%) 1554 (32%) 607324

Diff 919 (-7%) 897 (-7%) 942 (-7%) 3410696
DT - Conv Same 1488 (32%) 1404 (31%) 1572 (33%) 531164

Diff 933 (-5%) 912 (-5%) 954 (-5%) 3486856
DT - Conv/Dense Same 1557 (38%) 1485 (38%) 1629 (38%) 589824

Diff 911 (-7%) 890 (-7%) 933 (-7%) 3428196

Table 4.2: Contact Time by users in the same cell on Geolife (GL), San Francisco (SF),
and Dartmouth (DT) datasets.

more precise decisions regarding the distribution of equipment throughout the area vis-

ited by the same mobility group. Moreover, the job of collecting and reallocating assets

still needs to be performed so that they are available to users in the appropriate parks and

racks. This can also be optimized once users groups’ movement patterns are known.

Carpool services, such as Waze, Scoop and Lyft are other examples of mobile-based

applications. A carpooling activity consists of a matching process that enables drivers

and passengers to be matched, and a daily route commute process that chooses the order

at which passengers will be picked up and dropped off. The complexity of the problem

of finding the length of the carpooling route, and select the best route scales dramatically

according to the increase in the number of candidates and the number of passengers in

the carpool [Xia J 2015]. Such applications improve the efficiency in the carpool sharing

matching algorithm if they had knowledge about mobility patterns of groups/communi-

ties that share the same paths (fully or partially). A vehicle-to-passenger communication

(V2P) approach to support communications between riders and drivers that allows ride-

sharing, such as [Liu et al. 2010], could also benefit from our approach.
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Time elapsed (sec.) Loss Total Parameters
GL - Dense 9.58 0.0046 483,481
GL - Conv 2184.21 0.0503 331,890
GL - Conv/Dense 268.36 3.1765e-04 495,017
SF - Dense 49.39 0.0245 1,015,600
SF - Conv 2500.02 6.9078e-05 388,017
SF - Conv/Dense 989.44 8.8735e-05 200,802
DT - Dense 78.34 0.0056 443,374
DT - Conv 1047.79 0.0072 72,122
DT - Conv/Dense 537.47 0.0044 266,073

Table 4.3: Time elapsed, Training Loss and total number of parameters for the three
autoencoder architectures analyzed.

These applications normally rely on user id, home address and work address to per-

form matching. If the application knows a priory the information about the group struc-

ture, labeling users according to groups that reflect their geographical preferences, com-

munication between drivers and riders and even the matching algorithms could be im-

proved.

Message routing protocols on wireless networks can also take advantage of the mo-

bility pattern identified by the proposed method, since users belonging to the same group

spend more time together and can be good message forwarders. This characteristic was

studied in several previous work [Yuan et al. 2016, Alajeely et al. 2017, Li and Wu

2009,Chuah and Coman 2009] and it was found that the time users spend together, in one

region and at the same time, has a great impact on the probability of delivering messages

in some types of networks. In this work, we show that the proposed group identifica-

tion strategy increases the average total time spent together for members of the same

group by up to 80% if compared to the average time pairs of users spend together without

considering community structures. We show that our best autoencoder model increases

average total contact time by up to 150% when comparing with an approach that clusters

the users using raw mobility data. Moreover, the same metric is improved by 80% when

considering our best approach, for one of the datasets in our study, when compared to the

non-deep learning approach. On the other hand, when using our best model, we also find

that users belonging to different groups (i.e, users who do not have strong relationship

or common interests) have much smaller total contact then the same metric computed for

groups extracted by other methods.

Figure 4.5(a) shows probability distribution of finding a member of a given group in

a given position on the map, for all groups extracted by our method and plotted over the

Beijing city map. As expected, different groups have different preferences for different
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(a) All groups in the map (b) Blue group (c) Red group

Figure 4.5: Groups extracted by the proposed methodology plotted in the map of the city
of Beijing.

regions of the city. This is more evident when looking at Figure 4.5(b) and Figure 4.5(c).

These figures show the trajectories of all nodes belonging to groups 1 (blue) and 2 (red),

respectively. The blue group visits much of the city, but has preference for the upper-right

region of the map, while the red group preferences are more evident towards the lower-left

region. Figure 4.6 also shows the probability distribution of finding a member of a group

in the map, but filtered by week days. We can observe from the figure that geographical

preferences can change over time. Hence, the proposed autoencoder architecture should

be retrained at appropriated time intervals, according to the temporal sensitivity of the

application applying the models, such as carpool sharing and V2P communications.

Smart mobility applications can distribute their equipment, parking lots and racks ac-

cording to the groups’ regions of preference, also considering groups’ routes. The sharing

algorithms of carpooling applications could run their matching searches between source

and destination more efficiently within a group, increasing the probability of overlapping

routs and origin and destination pairs. Also, algorithms for message forwarding or adver-

tisement dissemination applications could take advantage of the location and encounters

among same group users to forward their messages in order to reach a specific audience,

increasing message delivery rate.

4.7 Conclusion

In this chapter we proposed an approach to automatically identify user community

structures from real mobility records (e.g., GPS fixes and Wi-Fi network logs). We show

that the proposed methodology which uses deep autoencoder to pre-process raw mobility

datasets is able to more accurately uncover community structures which identifies groups
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Figure 4.6: All communities by week days in the city of Beijing.

of users sharing common geographical interests and temporal relationships. The proposed

methodology was built based on 3 main pillars: (1) geographical preferences feature gen-

eration, pre-processing and mobility data transformations, (2) deep autoencoders for di-

mensionality reduction and extraction of latent non-linear representations of the mobility

data, and (3) clustering the output of the autoencoders and visualizing clusters by applying

the t-SNE visualization technique.

Through extensive experimentation using three real mobility records representing di-

verse urban mobility scenarios we show the effectiveness of the proposed autoencoder-

based methodology. Our results show that automatically extracted features lead to an

improvement of the performance of spatial similarity metrics while increasing contact

time for users in the same community from 30% up to 150%. Moreover, the proposed

approach reduces the complexity of the features design task.

According to the results, we can notice that users belonging to the same community

spend more time in certain geographic regions, which increases the probability of same

community user meeting, when compared to users of different communities. We therefore

expect that users belonging to the same community are potential opportunistic message

forwarders. Also from the observation of the obtained results, users from different com-

munities visit different geographic regions, although there is some intersection in some

points. Since nodes in the same community tend to have a high frequency of encounters,

the process of finding the best relay node and a good routing strategies can be improved

by taking this social structure into account. Also the control messages overhead as well as

the node storage table can be reduced if we consider only the group information instead
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of the individual. Thus, in next chapter we use the proposed community identification

methodology that can assist in the choice of relay nodes considering the contact opportu-

nities between nodes in opportunistic networks.
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5. Deep autoencoder based community detection and its
application to data forwarding in Opportunistic Networks

Many researchers are seeking solutions to the limitations (e.g., in terms of delay, deliv-

ery ratio, overhead, etc.) imposed by opportunistic connectivity, by developing schemes to

data dissemination [Conti and Giordano 2014]. This chapter proposes a deep autoencoder

community based routing protocol named DACCOR, which uses geographical preference

features for making routing decisions. DACCOR uses a neural network trained on features

extracted from real mobility records and uses its output to compute metrics that allows

the protocol to make the next hop selection decisions. The performance of the proposed

protocol is evaluated and compared with Epidemic and Prophet routing protocols in terms

of delivery probability, latency, overhead, hop count and number of dropped messages.

Finally, we show that by decreasing overhead and using less bandwidth and less radio,

DACCOR is also able to dramatically and positively impact on energy consumption, op-

timizing mobile device’s battery life.

5.1 Introduction

Thanks to the penetration of smartphones and their sensors in everyday life, associated

with the tremendous volume of data to be exchanged between communicating devices,

mobile communication technologies are no longer simply a means to connect a mobile de-

vice to the network infrastructure. The convenient short range communication functions

integrated in smart devices (e.g. Bluetooth and WiFi) have given birth to some emerg-

ing applications such as Intelligent Transportation Systems (ITS), recommender systems,

mobile data offloading, device to device communication, vehicular ad-hoc networking

(VANET), internet of things (IoT) among others. Application-oriented paradigms are also

emerging such as people centric networking, that puts people in the center, as the network

is built with the users’ devices. In this paradigm billions of users’ mobile devices can
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be used for location-aware data collection, instrumenting the real world and generating

observations – crowd-sensing – and also to offer cloud computing services.

In such scenarios, usually the environment is saturated with mobile devices, that can

self-organize into networks for local communication amongst themselves. These net-

works are generally partitioned in disconnected islands, which can be connected by in-

frastructure network such as Wi-Fi or cellular networking, if they exist. However, even if

such infrastructure exists the cost and energy consumption can be significant. Therefore,

due to the pervasive nature of such environments, opportunistic networks emerge as a

means to provide or extend communication.

Opportunistic networking is one of the most interesting evolution of the multi-hop

networking paradigm. This success is mainly due to the fact that opportunistic networks

do not consider node mobility a challenge but an opportunity to forward data [Conti and

Giordano 2014]. In this network, temporary and occasional contacts between users and

their devices present themselves as data transmission opportunities, while the user mobil-

ity can be seen as the transport media of this data. Opportunistic networking emerge as

an area of growing interest with several challenging research issues.

In order to propagate messages properly, an efficient forwarding scheme should be

able to send messages to specific and most suitable devices in such a way that chances of

successful data recovery and delivery are increased. Another important concern should

be to keep network overhead as low as possible, avoiding unnecessary transmissions. The

importance of reducing overhead lies on the fact that mobile devices are limited in battery

power, and reducing unnecessary radio transmissions can substantially decrease energy

consumption, increasing battery life. Thus, the challenge is on how to forward data to

relay nodes that have best chance to contact their destination, limiting also the number of

copies being relayed in the network.

Opportunistic routing protocols seek to discover similar behavior or relationships

among users in the network in order to use this information in the decision making of

when and to whom to forward messages [Yuan et al. 2016, Alajeely et al. 2017, Li and

Wu 2009,Chuah and Coman 2009]. It has been demonstrated that community scheme im-

prove forwarding messages in specific scenarios [Yuan et al. 2016]. The first community-

based proposed was BUBBLE [Hui et al. 2008], that uses the well known centrality

metric and community structure to forward data. More recent works, such as [Xia et al.

2015, Yuan et al. 2014, Nguyen and Giordano 2012] to name a few, still proposing com-

munity based protocols to forwarding data. [Yuan et al. 2014] studied the impact of less

popular nodes on the diffusion of messages on the network. More specifically, the au-
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thors removed nodes that were less “important" (low centrality) and found that message

delivery performance was degraded.

Despite of the fact that taking community structure into account when making for-

warding decisions, do improve performance, most community detection schemes extract

these information via inter contact time between users [Eagle and (Sandy) Pentland 2006]

(i.e. peer contact), or using information obtained through social networks or telecommu-

nication company [Phithakkitnukoon et al. 2012, Motani et al. 2005], through calls made

by mobile phones. Therefore, it is extremely useful to identify communities only through

human mobility behavior, rather than depending on information obtained from external

factors. Besides that, none of those works take into account the geographical preference

and node density behavior described by our proposed mobility model and community

identification methods.

This chapter presents a Deep AutoenCoder Community-based Opportunistic Routing

protocol (DACCOR) for data forwarding in opportunistic networks. DACCOR takes into

account the user mobility feature extraction and the community detection method pre-

sented in the previous chapters based on user geographical preference extraction using

deep learning. The proposed DACCOR forwarding scheme uses community information

to make forwarding decisions between members of different communities, and the com-

puted user relationship metric (i.e., called SSIM metric, also presented in the previous

chapter) to make forwarding decision within the community.

5.2 DACCOR - Deep AutoenCoder Community-based Opportunistic Routing pro-
tocol

This section provides the detailed design of the proposed Deep AutoenCoder Community-

based Opportunistic Routing protocol (DACCOR) for data forwarding in opportunistic

networks. We will introduce a user mobility feature extraction method and then present

a novel community detection method, based on user geographical preference extraction

using deep learning. Then, we discuss the user relationship metric used to identify sim-

ilarities between members of a community and how it can be calculated. Finally, we

present our social community based forwarding scheme used in DACCOR.

Mobility traces provide information about mobile devices location over time. By an-

alyzing such information it is possible to obtain mobility characteristics of mobile users,

including the distance traveled by the user, the distance between other devices, the time

they spend together (i.e., contact time), etc. Since people move with a certain purpose
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Figure 5.1: Parts from the DACCOR protocol, including the phases: inter-comnunity
routing, intra-community routing and forwarding of messages.

(e.g. work to home), we assume that their locations and mobility characteristics may in-

volve their interests and preferences. On the other hand, in an analogous way, we assume

that if users do not share features and places in common, they have different interests and

thus are less likely to have social relationships. Once such characteristics are found, it is

possible to group individuals with similar mobility behaviours and geographical prefer-

ences/interests. Extracting and understanding such information may enable the successful

elaboration of more realistic mobility models, increase the efficiency of message routing

algorithms for opportunistic networks, development of context-based applications, among

other applications.

In this work we are interested in extracting user mobility characteristics and trans-

mission opportunities between devices. In order to do so we propose a set of steps to

pre-process the raw mobility data from GPS and WiFi records. We start by extract-

ing the two-dimensional maximum and minimum limits of the area defined in the raw

data records and dividing this area into equal sized squared cells, constructing an spatial-

temporal feature matrix. Such matrix holds the geographical and temporal characteristics

of the users. The i-th row of the matrix represents the i-th user ∀i ∈ [1,I], where I is

the maximum number of users. The c-th column of the matrix represents the c-th cell

∀c ∈ [1,C], where C is the maximum number of cells. Each of the (i,c) matrix positions
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hold the time spent by user i in that cell c. It is important to note that this feature matrix

must be normalized so that an attribute with values higher than others does not dominate

the distance metrics calculated during cluster analysis.

Once we construct the normalized feature matrix a nonlinear transformation is applied

to the attribute matrix, using the logarithmic likelihood function logit. When applied to the

normalized data this transformation modifies the proportions of the attributes matrix vari-

ables so that data between (0,1) takes real values, between (−∞,∞), and is symmetric

at 0.5. This transformation, besides evidencing the differences and similarities between

the observations for each variable, also improves pattern identification and learning, as it

will become clear in the next section.

Finally, we generate the i-th image for each node i, by reshaping the i-th row of the

mobility feature matrix into a 2D-image, that will reflect the dimensions of the area of the

trace in cells. For constructing this image, we simply take each c-th position of the i-th

row of the feature matrix as a pixel, where the values of each position is the intensity of

that pixel. These images reflect the actual user displacement in the studied scenarios and

thus indicate the user movement patterns and geographical preferences. Now the data is

ready to be fed to the the neural network, as discussed in the next section.

5.2.1 Identifying user community structures using a deep learning approach

Deep learning (DL) models have been widely employed in recent years by researchers

and practitioners to solve a plethora of different problems in many areas [LeCun et al.

2015, Bengio et al. 2012, Liu et al. 2016]. Identifying user community structures from

raw mobility data requires unsupervised learning approaches since, most of the time, there

is no previous knowledge from these raw records about the nature of the relationship

between users, whether they belong to certain communities, etc. An autoencoder is a

neural network architecture designed to learn data encodings in an unsupervised fashion.

It is typically used for dimensionality reduction, where the complexity and variability of

the data is reduced into an encoded, more compact representation [Charte et al. 2018].

Along with data reduction, there is also a reconstruction step that tries to reconstruct a

representation as close as possible to the original input. In other words, the autoencoder

takes a set of unlabeled data x ∈ Rn and tries to learn an approximation to the identity

function to force the output to be as similar as possible to the input.

Autoencoders consist of three basic general components: (1) the encoder, that is the

portion before the most compressed layer (or code) of the architecture. It compresses the

input vector x into a latent representation h using a weight matrix ω; (2) the code, h, or
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latent space representation, is a lower-dimensionality representation of the input. This re-

duced representation allow us to discover interesting structures about the data; and (3) the

decoder, the portion after the code, maps h back to the input, reconstructing it to obtain x ′

with another weight matrixω ′. Parameter optimizations are used to minimize the average

reconstruction error between x and x ′. Usually, the input and output layers have the same

dimensionality. One category of neural network that is widely used for image processing

tasks is the convolutional autoencoder (CAE). CAEs are designed to process data inputs in

the form of multidimensional arrays, e.g. images composed of 2D arrays containing pixel

intensities in color channels. CAEs use the same principle as the traditional autoencoders

discussed above, but instead of fully-connected layers, it contains convolutional layers in

the encoder part and deconvolutional layers in the decoder part. The vast majority of ap-

plications of convolutional neural networks focus on image data, and so does the present

work. Our proposed methodology is based on convolutional autoencoders, applied to

extract features from real mobility data and identifying communities automatically.

5.2.1.1 Convolutional autoencoder design

Training the network means learning the weight matrix ω ′ associated with all the

neurons in the network. The basic unit of computation in a neural network is the neuron,

often called a node or unit. During the training, each unit located in any layer in between

input and output layers, also called hidden layers, receives several inputs from the preced-

ing layer. Analogously, convolutional autoencoder (CAE) architectures are structured in

several stages of convolutional and pooling layers [Sze et al. 2017]. The units in a CAE

are organized in features maps, also known as convolutional filters or even convolutional

kernels, that are connected through a set of weights between the layers.

The unit computes the weighted sum of these inputs and eventually applies an activa-

tion function, to produce the output. The output of all, except the last of our convolutional

layers are activated by a Rectified Linear Unit (ReLU) activation function, where the out-

put is f(x) = max(0,x). Only the last layer, the output layer, is activated by a linear

function. The non-linear behavior of neural networks comes from the choice of these

activation functions. Other popular ones are Linear, Logistic, ReLU, SELU, and Tanh. In

this way, the convolutional autoencoder is able to detect local groups of values in an array

of images that are often highly correlated, and also detect spatial invariance patterns. In

other words, if a pattern is identified in a part of an image, it could appear also in other

parts. Hence, the convolutional layer is responsible for detecting patterns from the pre-

vious layer, and the pooling layer for merging semantically similar features to one. In

CAE, the pooling layer is responsible for reducing the dimension of the representation
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and creating an invariance to small shifts and distortions on the images.

After these steps, the output x ′ (reconstructed node’s trajectory image) is compared

to the input x (original node’s trajectory image), and the error will be propagated to every

individual unit using the back-propagation algorithm [LeCun et al. 2015]. Finally, each

weight’s contribution to the error is calculated and the gradient descendent algorithm is

adopted to adjust the parameters at each layer (i.e., update the weights). We trained our

autoencoder to minimize the mean square error and the optimizer used was Adam.

Usually, CAEs contain two or three stages of convolutional layers, non-linear activa-

tions and pooling layers, followed by more convolutional and/or fully-connected layers.

Our proposed architecture contains a convolutional network with three 2D convolutional

layers on the encoder, followed by a fully-connected layer in the latent space, and three

symmetric 2D convolutional layers to reconstruct the input. This network has the fol-

lowing structure: the three convolutional layers on the encoder side contain 128, 64 and

32 filters with sizes that varies from (3x3) to (5x5) depending on the shape of the input

image, and strides over 2x2-pixels. The latent layer contains a flatten layer with 8 units.

The reshape image has size N = 1 x 2 and 128 filters. This leads to feature representations

of dimensionality D = 8, which were used as input into the clustering algorithm. The

deconvolutional layer is symmetric to the convolutional one with similar parameters.

5.2.1.2 Clustering Encodings

In this work we applied the Model-Based Clustering (MBC) for detecting community

structures from the lower-dimensionality representation of the input obtained from train-

ing the autoencoder. MBC is a representative of a probabilistic model approach for data

clustering that models the density function by a probabilistic mixture model. This method

assumes that the data is generated by a mixture distribution and the clusters are defined

by one or more mixture components [Dasgupta and Raftery 1995]. Each cluster, can be

modeled by a Gaussian distribution that has three parameters: mean vector, covariance

matrix and an associated probability in the mixture, where each point has a probability

of belonging to each cluster. The Expectation-Maximization (EM) algorithm, initialized

by hierarchical model-based clustering, is often used for estimating the parameters of the

model, where clusters are centered at the mean value, and the geometric features (shape,

volume, and orientation) are given by the covariance matrix.

The MBC consists of three main steps: (1) During initialization, it is necessary to

specify the number of clusters and randomly initialize the distribution parameters for each

group. The agglomerative hierarchical clustering is used to obtain the initial partitions of
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the data. (2) Then, the probability that each data point belongs to a particular cluster is

computed. (3) Finally the EM (Expectation-Maximization) algorithm is applied, which is

based on a maximum likelihood estimate used to estimate the likelihood of the mixture

parameters. (3) Finally, once the covariance matrix of the components lead to different

models, the BIC (Bayesian Information Criterion) is applied to choose the best model.

5.2.2 Community member user relationship

Image quality comparison metrics work in our case as similarity indexes for spatial

displacement, since the images we use as input for our autoencoder architecture, can be

seen as heat-maps of each user’s geographical preferences (i.e., time spent at a given

location). Analogously, we seek to establish, rather then a spatial, also a temporal rela-

tionship metric. We argue that users belonging to the same group would spend more time

together, as they would share similar interests, routes and geographical preferences, even

though we only used data about users’ individual geographical preferences in order to

form groups.

In this way, we use the Structural SIMilarity (SSIM) Index to compute the similarity

in the mobility behaviour of two nodes by comparing the similarities between the two

user trajectory images. The SSIM index identifies the information structures found in

the images and therefore is used to compute the similarity between a pair of nodes. The

SSIM algorithm compares point by point two images aligned and scaled. Three similarity

functions are computed on the image data: (1) luminance similarity, (2) contrast similar-

ity, and (3) structural similarity. Note that the more the value of SSIM approaches 1, the

more similar are the two images, and also, the more similar are the attributes of the two

nodes.

The similarity for two images X and Y can be calculated as follows:

SSIM(x,y) = [l(x,y)]α.[c(x,y)]β.[s(x,y)]γ (5.1)

where the luminance comparison function l(x,y) is a functions of the mean intensity

of image x and y and is given by

l(x,y) =
2µxµy+C1
µ2x+µ

2
y+C1

. (5.2)

The contrast comparison function c(x,y) is the comparison of the standard deviation
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intensity of image x and y and is given by

c(x,y) =
2σxσy+C2
σ2x+σ

2
y+C2

. (5.3)

And, the structure comparison function s(x,y) is defined as

s(x,y) =
σxy+C3

σx+σy+C3
(5.4)

where σxy can be estimated as

1

N−1

N

∑
i=1

(xi−µx)(yi−µy) (5.5)

The constants C1, C2 and C3 are small constants that provide stability when the

denominator approaches zero. More details about the SSIM algorithm can be obtained

in [Wang et al. 2004].

In summary, the encoding of features towards extracting user mobility features using

deep-autoencoder consists of the following steps: (1) generate the mobility image based

on the feature matrix extracted from the real trace; (2) construct the deep autoencoder

architecture for the trace. It is not possible to train a single architecture for general use,

since the models depend on the size of the input, and it varies with the application scenario

(i.e., the size of the area, number of cells and feature matrix changes from scenario to sce-

nario); (3) train the deep autoencoder by using the input image representation obtained

from the mobility features described above; (4) once the network is trained, extract the

reduced features (code) from the autoencoder latent representation space. These features

can be used to make predictions, and comparing the original input with the reconstructed

image; (5) use the reduced latent feature representation as input for the MBC clustering

algorithm; (6) extract community labels from the clustering algorithm; (6) extract node

similarity from SSIM metric. We now have extracted mobility patterns and are in posses-

sion of community structure and relationship indicators between each pair of nodes. The

community structure is indicated by the community labels given by the clustering algo-

rithm. The relationship between every node is given by the SSIM index values computed

for every pair of nodes, which indicates their geographical preferences similarity. We can

take advantage of these information to make more intelligent and educated decisions on

when and to whom forward a message to in the context of opportunistic and delay tol-
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erant networks. The following sections introduce DACCOR, a new forwarding protocol

that takes advantage of the community structure information.

5.3 DACCOR Forwarding Protocol

The proposed DACCOR forwarding scheme uses community information to make for-

warding decisions between members of different communities, and the user relationship

(SSIM metric) to make the forwarding decision within the community. This approach

provides DACCOR with scalability by decreasing the vector size needed to carry neigh-

boring information. It can be done by tuning the number of communities that exist on the

network, i.e. the larger the number of communities the smaller the number of members

belonging to any given community.

5.3.1 Community Affinity and SSIM metrics for communities and nodes similarities

We consider the following features in order to determine the suitability of a relaying

node to carry a message to the destination:

1. Node community ID (cID) - The community label carried by each node and ex-

tracted by the proposed community identification using deep learning, as detailed in Sec-

tion 5.2.1.

2. Community affinity (CA) - The relationship between the communities of the en-

countered node and destination node. It is computed by the average of SSIM for pairs

of nodes belonging to the two communities (i.e., the community of the encountered node

and the community of the destination node), as further discussed in the following Sec-

tion 5.3.2.

3. Node Similarity - The similarity between the encountered node and destination

node, if it is the case, i.e. if both nodes belong to the same community. It is computed

using the SSIM index for each pair of nodes in the community, as detailed in Section

5.2.2.

We assume that all nodes know the information about which community it belongs

to, the community relationship between all communities in the network, and the SSIM

metric of all members of their own community.

The forwarding is carried by combining two strategies: (1) Inter-community based on

social community membership and (2) Intra-community based on user node relationship.
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5.3.2 Inter-community Routing

Our proposed social community is calculated based on the user mobility patterns ex-

tracted in Section 5.2.1 and shared by members of the network. The inter-community

forwarding scheme uses the community affinity information to make the forwarding de-

cision. In DACCOR, each node maintains an N x N community affinity matrix, which is

defined as:

CA=


C11 C12 ... C1N

C21 C22 ... C2N

... ... ... ....

CN1 CN2 ... CNN

 , (5.6)

where Cn,m denotes the community affinity between each community n and commu-

nity m, for all n and m ∈ {1..N}, where N is the total number of communities. Cn,m is

obtained by

Cnm =

{
1, if n=m

E(SSIMn,m), if n ,m.

E(SSIMn,m) is the average of SSIM between pairs of nodes belonging to communities

n andm. Thus, the CAmatrix dictates the message forwarding between nodes belonging

to different communities, i.e. nodes that have different communities ID (cID).

For example, assume that a node i has a message to destination node d and encounters

with node j. Also, assume that node i and node d belong to different communities, n

and m, respectively, i.e. Cn,m , 1. If j is the destination (i.e., j = d), i will forward the

messageM to j. If node j belongs to the same community of node d, then node i forwards

the message to node j. If not, node j does not belong to the same community of node d,

and node i will verify the community affinity matrix to decide if it is going to forwardM

to node j or not, i.e. if Cj,d > Ci,d then i is going to forward M to j. Otherwise, i will

not forward it and continue to hold and carry messageM. When the message has reached

the destination’s community, DACCOR looks for relay nodes that are more similar to the

destination node, by using the SSIM metric as discussed in Section 5.2.2. Algorithm 4

shows the detailed forwarding algorithm for the first phase.
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Algorithm 4 Inter-community AE community based algorithm
Input:noded, nodei, nodej, community ID (cID),M, CA

while noded without M do
current nodei encounters nodej withoutM

if nodej is noded then
nodej acceptsM from nodei and the forwarding process ends

else
if nodej and noded in C then

nodei forwardsm to nodej
else

if CA(cIDj,cIDd) > CA(cIDi,cIDd) then
nodei forwardsm to nodej

end

end

end

end

5.3.3 Intra-community Routing

For intra-community routing, the proposed protocol uses the SSIM metric, defined in

Section 5.2.2 to determine the probability of message forwarding for each encountered

node. Thus, the SSIM metric dictates the message forwarding between members of the

same community.

For instance, assume there is a node i carrying a message, an encountered node j and

a destination node d, all belonging to the same community. DACCOR will search for the

higher geographic similarity, by comparing the SSIM metric between the two nodes and

the destination node. In other words, if SSIM(nodej, noded) > SSIM(nodei, noded)

the message is forwarded from node i to node j.

In addition, to increase the probability of message delivery, even if node j and node d

are not part of the same community, the message can be forwarded using the community

affinity metric. We understand that a node may have a social relationship with more

than one community on the network and therefore if node j has community affinity that

is greater than the average community affinity for all communities in the network, the

message will be forwarded. Algorithm 5 shows the detailed forwarding algorithm for the

second phase.

105



Algorithm 5 Intra-community AE community based algorithm
Input:noded, nodei, nodej, community ID (cID),M, CA, SSIM, E[CA]

while noded without m do
current nodei encouters nodej withoutM

if nodej is noded then
nodej acceptsM from nodei and the forwarding process ends

else
if nodej is in C and SSIM(nodej,noded) > SSIM(nodei,noded) then

nodei forwardsM to nodej
else

if CA(cIDj,cIDd) > E(CA) then
nodei forwardsM to nodej

end

end

end

end

5.4 Performance Evaluation

The performance of opportunistic networks may vary significantly, depending on sev-

eral factors such as node mobility, population density and the distance from sender to

receiver. Depending on the scenario delivery latency may vary from minutes to hours or

even days, and delivery probability may range from close to 0 or go up to 1. The key

factors are the routing algorithms used and how well their design assumptions match the

actual mobility patterns.

In this way, we evaluate the proposed routing protocol against two benchmark pro-

tocols PRoPHET [Lindgren et al. 2003] and Epidemic [Vahdat et al. 2000] protocols in

terms of delivery ratio, average latency, hop count and overhead, when using synthetic and

real mobility records, to demonstrate the effectiveness of our community based protocol.

Our rationale for choosing these routing protocols for our comparative performance study

of DACCOR is as follows.

Epidemic, despite its limitations, has been widely used to evaluate opportunistic net-

works and their protocols and serves as the upper bound for delivery and cost. In Epidemic

protocol, messages are stored locally and, during any encounter, the message is flooded

through the network. Epidemic shows the upper bound of delivery ratio of any routing

methods. However, it also shows the biggest message overhead. In contrast, DACCOR
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uses the community approach to select appropriate forwarders that presents greater geo-

graphical similarity with the message destination, and thus controls the number of hops,

and costs less network resources (e.g., bandwidth, device battery, etc).

PRoPHET uses the delivery predictability metric based on historical contact frequency

between nodes to choose the next relay nodes. The difference between DACCOR and

PRoPHET is that DACCOR selects the next relay nodes based on the geographical sim-

ilarity, whereas PRoPHET relies on node encounter history to estimate which node has

the highest “likelihood” of being able to deliver a message to the final destination.

PRoPHET is a non-oblivious benchmark that has been evaluated against several previ-

ous works, including social-based protocols. For example, BubbleRap [Hui et al. 2008],

the first social-based protocol, compares its performance against PRoPHET. As a result,

the authors found a similar delivery ratio to PRoPHET with half of the PRoPHET cost.

BubbleRap protocol uses two network characteristics that are community and central-

ity. Some devices interact with more devices than others in a community and they are

considered to have high centrality. This approach uses this metric, i.e. centrality, to relay

nodes to forward node to the destination.

Also, more recently proposed protocols have extended PRoPHET [Pathak et al. 2017],

but preserve the core node contact history-based features. As such, since PRoPHET has

been evaluated against other algorithms before [Pathak et al. 2017], including the social-

based ones [Hui et al. 2008], it is a good target to compare with DACCOR.

The following section presents the evaluation scenarios and experimental setups used

in our evaluation.

5.4.1 Experimental Datasets

To illustrate our approach, the datasets used in this study were selected to cover a

range of scenarios considering vehicular and human mobile networks: GeoLife [Zheng

et al. 2010], San Francisco cabs [Piorkowski et al. 2009] and Helsink [Keränen et al.

2009]. The GeoLife trace, refers to mobility in various scenarios in the city of Beijing,

including different modes of transportation (e.g. walking, cycling and driving). The trace

represent GPS trajectories of 182 users, collected over a period of three years and sampled

every 5 seconds. The user trajectory is represented in the dataset by a sequence of latitude

and longitude set of coordinates over time. The dataset contains 17,621 trajectories with

a total distance of 1,292,951 kilometers and total duration of over 50,000 hours. In our

simulation we used 12 hours of the trace containing 169 nodes. A summary with the
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traces parameters are shown in Table 5.1

Trace # users Type Speed (km/h)
GeoLife [Zheng et al. 2010] 169 - -
SF Taxis [Piorkowski et al. 2009] 483 - -
Helsink [Keränen et al. 2009] 80 Pedestrians 1.8 to 5.4

40 Cars 10 to 50
6 Trams 25 to 36

Table 5.1: Summary of user mobility traces considered in our study.

The vehicular mobility record is related to the movement of taxis in the city of San

Francisco/USA. The SF trace represents GPS trajectories of 483 users, and was collected

for 24 days with samples ranging from 1 to 3 minutes.

Helsink is a synthetic mobility trace available in the ONE simulator. Nodes move on

the simulation area according to a mobility trace generator, where 80 are pedestrians, 40

are cars and 6 are trams. Cars run at uniformly distributed speed from 10 to 50 km/h

and trams at 25 to 36 km/h with uniformly distributed pause times of 10 to 120 and 10

to 30 seconds, respectively. In this scenario, trams follow predefined routes defined by

the simulator, while pedestrians and cars choose random destinations in their reach on

the map and move towards theirs next destination by following a shortest path algorithm,

such as Dijkstra algorithm.

Parameters values
Transmission rate 2 Mbps
Radio range 150m
TTL 12h
Buffer size 1GB
Simulation time 12h
Message sizes 500KB to 1000KB

Table 5.2: Simulation parameters.

5.4.2 Experimental setup

We designed simulation experiments with the Opportunistic Network Environment

(ONE) simulator. We assume that devices uses WLAN radios with a transmission rate of

2 Mbps and data range of 150 m. The radio range has minor impact and do not change

the elementary interaction characteristics between the devices [Keränen and Ott 2007].

The mobile devices have 1 GB of free buffer space for storing and forwarding messages.

Simulation time and message time-to-live (TTL) was define to last for 12 hours. Random
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source nodes generate messages to a randomly chosen destination on average once every

interval of time. The length of such interval was varied in order to change network load

conditions, i.e., smaller inter-message periods allow a greater load, while larger intervals

decrease the load in the network. Inter-message periods are randomly chosen over the

following average intervals: 6, 8, 12, 18, 60 and 600 seconds (uniformly distributed).

Message sizes are uniformly distributed between 500 KB and 1MB. Given average mes-

sage sizes, inter-message transmission intervals and channel capacity, these intervals were

chosen to represent the network load ranging from 0.1 to 1 proportion of the channel ca-

pacity.

In all experiments, we compare each protocol using the following routing metrics.

• Delivery probability: the probability of successfully delivering messages from source

to the destination is computed as the total number of successfully delivered mes-

sages in the networks, divided by the total number of messages created.

• Overhead: the total number of relayed messages in the network, divided by the total

number of successfully delivered message, i.e. the amount of transfers required to

perform one successful delivery.

• Latency: the average elapsed time from the instant a message is generated to its

successful delivery at the destination.

• Hop count: the average number of hops for each successful delivery.

• Buffer time: the average duration of time a message spend in a buffer.

• Dropped Message: number of messages dropped due to buffer overflow.

5.5 Results

Results are reported here for the Helsink, San Francisco and GeoLife mobility traces

with a 95% confidence interval over 10 runs for each network load, giving a total of

10× 5 = 50 simulation runs for each scenario. We randomize the traffic scenarios by

varying the source and destination pairs of the flows in each of the 10 runs.

Figures 5.2, 5.4 and 5.3 show all the four defined metrics varying over the total net-

work load (i.e., x-axis) for Helsink, GeoLife and San Francisco mobility scenarios. We

can see from those figures that DACCOR achieves the highest delivery ratio with the low-

est overhead and Hop count when compared to other protocols. The only exception is for
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Geolife scenario considering a network load of 0.1. We argue that this reduced delivery

ratio can be explained by the scenario’s sparsity associated with the selective nature of

DACCOR, which does not forward messages until it encounters a node with the same

geographical preferences as the destination node. In fact for this scenario, where there

are few messages to be forwarded and a low contact number between nodes, the best

performing protocol is Epidemic. However, even though Epidemic achieves best delivery

probabilities for low load, it costs more unnecessary transmissions and hops, dramati-

cally increasing battery consumption of mobile devices and at the expense of network

bandwidth, as shown in Figures 5.4(b) and 5.4(c), respectively.
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Figure 5.2: Performance evaluation for buffer size of 1GB and no TTL for DACCOR,
Prophet, and Epidemic protocols under Helsink scenario.

It should be noted that the overhead metric considers only the messages delivered to

110



calculate the number of messages replicated on the network. Therefore, we can observe

that as the number of messages dropped on the network increases (Figures 5.2(f), 5.3(f),

and 5.4(f)), the overhead on the network decreases (5.2(b), 5.3(b), and 5.4(b)). In other

words, since there are fewer messages delivered on the network, there is also a smaller

value of relayed messages counted in the overhead metric as the load increases. Table 5.3

helps to visualize the message overhead in the San Francisco trace scenario once it is not

possible to view the message overhead values graphically. It is due to the large disparity

between the DACCOR overhead and the other protocols.

Figures 5.2(e), 5.3(e), and 5.4(e) show the buffer time for messages that were not

delivered to the network due to buffer overflow. The message discard policy is FIFO.

We note that DACCOR has the longest buffer time, especially for low load, as it is more

selective and therefore tends to buffer messages longer. We can argue that in the case of

the epidemic protocol, which forwards messages at each encounter, when the node buffer

fills the buffer time approaches the meeting time between nodes.

It is worth noting that Figures 5.3(e), and 5.4(e) do not have values for buffer time

up to a load of 0.25 for DACCOR protocol. This is because DACCOR protocol does not

reach the buffer limit, so there is no message loss until this message generation rate.

A possible downside for DACCOR due to its selective behavior when forwarding

messages is the average latency for message delivery. However, the protocol has clear

advantages over other metrics.

Load/ 0.1 0.25 0.50 0.75 1
Protocol µ(σ) µ(σ) µ(σ) µ(σ) µ(σ)

Epidemic 4434 (263) 2095 (94) 1512 (71) 1051 (58) 792 (38)
Prophet 4470 (408) 2368 (91) 1756 (52) 1297 (24) 1011 (59)
DACCOR 52.56 (5.09) 68.65 (3.98) 72.92 (0.96) 78.13 (1.35) 84.02 (2.82)

Table 5.3: Average values (µ) and standard deviation (σ) for the overhead metric for the
San Francisco trace.

Results presented in this section confirm the efficiency of introducing geographical

preference in the design of community based routing schemes. It is also worth to empha-

size the extremely reduced energy fingerprint of DACCOR, as observed by the network

overhead. With an overhead that is orders of magnitude lower than the other protocols,

DACCOR activates the devices radio much less, saving energy and increasing battery life.
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Figure 5.3: Performance evaluation for DACCOR, Prophet, and Epidemic protocols under
San Francisco scenario.

5.6 Related Work

Several forwarding messages protocols on opportunistic networks, including DAC-

COR, use the concept of communities as a strategy for choosing the next hop. Thus, this

section presents works related to opportunistic networks protocols and social structures

and clustering to form communities.
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Figure 5.4: Performance evaluation for DACCOR, Prophet, and Epidemic protocols under
GeoLife scenario.

5.6.1 Opportunistic Network Routing Protocols

In opportunistic networks, best forwarding nodes are chosen based on chances (utility

of node) they have to delivery a message to their destination. Next, a strategy to forward

message to relay nodes with high utility and lower cost has to be taken.

Some protocols use social relationship information for selecting the best relay node [Yuan

et al. 2016, Alajeely et al. 2017, Li and Wu 2009, Chuah and Coman 2009]. The first

community-based proposed was BUBBLE [Hui et al. 2008], that uses the well known

centrality metric and community structure to forward data. More recent works, such

as [Xia et al. 2015, Yuan et al. 2014, Nguyen and Giordano 2012] to name a few, still
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proposing community based protocols to forwarding data. [Nguyen and Giordano 2012]

uses relationship information containing node’s profile (such as name, address, work-

place, hobbies, etc.) to calculate the probability with destination.

In [Vangelis Angelakis and Yuan 2012] the relay node is selected in the neighbourhood

based on the highest probability to reach the destination. The probability is calculated,

using information that the sender knows about the destination, based on the behavior of

repeating patterns at different times during day, week, and month. Authors in [Gao et al.

2014] proposed effective schemes that consider the existence of other relays carrying

replicas of the same message in the network. The schemes eliminate this redundancy with

some global network information. The authors found an interesting result, they observed

that some messages replicas contribute little on improving the delivery ratio. Also, they

show that forwarding performance after redundancy elimination was improved by 20%.

The impact of less popular nodes on the diffusion of messages on the network was

studied in [Yuan et al. 2014]. More specifically, the authors removed nodes that were less

“important” (low centrality) and found that message delivery performance was degraded.

Hui and others [Hui et al. 2007] proposed a distributed detection scheme for Pocket

Switched Networks, where each device senses and detects its own community by ana-

lyzing the mobile device history it encountered. Just encounter events are used to build

social relationship between them. These works use data obtained from opportunistic net-

works traces, which only contains information of the meetings between the mobile de-

vices. More recently, [Chen and Lou 2016] proposed an expected encounter based routing

protocol that makes the routing decision by comparing the minimum expected meeting de-

lay to the destination. Besides, they proposed a community aware routing protocol using

the expected number of encountering communities. The paper studies how the failures of

some nodes in opportunistic networks can affect the performance of social-based forward-

ing strategies. These nodes can fail due to energy exhaustion, or intermittent connectivity

where they can be out of communication range. It was shown that the non participation

of only some important nodes can significantly degrade the performance of the entire net-

work. The authors concludes that the community-based forwarding and routing methods

in DTNs are really sensitive to the change of network communities.

5.6.2 Social Structures and Clustering

In a community aware opportunistic networks, nodes are divided into several com-

munities according to their relationships. Social network consist of nodes connected by

socially meaningful relationships. [Girvan and Newman 2002, Newman 2004] propose
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schemes to extract social relationships between users and also their social communities.

Some works use data mining to detect interests in certain geographic areas by users.

In [Khetarpaul et al. 2011], the authors propose a method to analyze users ’aggregate

GPS location and extract users’ location interests and rank them. In [Zheng et al. 2009a]

authors also use GPS user trajectories to mine location interests and travel sequences.

Authors in [Giannotti et al. 2007] mining similar sequences of user trajectories to find

patterns of trajectories and regions of interest, applying different methods for pattern ex-

traction. However, these papers do not consider the social characteristics of users and,

therefore, do not address the problem of user clustering.

Eagle and others [Eagle and (Sandy) Pentland 2006] seek to recognize social patterns

in the daily activity of users using traces generated from mobile devices (100 users using

Bluetooth). This work explores mobility profile and user behavior to propose a method-

ology for community identification based on the similarities found among different users.

However, they use data from Bluetooth encounters and the user location is inferred by the

cell tower locations, thus losing the granularity of moving nodes.

Authors in [Ferrari et al. 2011] extract social networking patterns based on users’

location in New York City, using the Twitter application. [Tang et al. 2012] proposes a

method for extracting similarities among users of different social networks, in order to

group them into communities. However, social networks provide information about user

location or interests with high granularity, since information is only recorded when users

actually use the social network. For example, uploading images in Instagram, or check-in

using Foursquare.

A mathematical model to study communities in social networks is proposed in [Mar-

bach 2016]. Authors assume that there is a population of agents who are interested in

obtaining different types of content. The communities are formed in order to maximize

their utility for obtaining and producing content. However, as stated by the author, the

model fails to capture some properties of information communities that have been ob-

served in practice.

As previously seen in this section, nodes tend to group into cluster structures. This

behavior is dictated by their mobility behavior and geographical preferences, which we

contend is also related to their community structure, assuming that similar individuals

present similar behavior and also belong to the same community. Since nodes in the same

community tend to have a high frequency of encounters, the process of finding the best

relay node and a good routing strategies can be improved by taking this social structure

into account. Also the control messages overhead as well as the node storage table can be
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reduced if we consider only the group information instead of the individual.

5.7 Conclusions

In this chapter we introduced DACCOR, a Deep AutoenCoder Community based Op-

portunistic Routing protocol. We hypothesize that users that have similar geographical

preferences have also similar interests and as such we used a deep autoencoder to pre-

process raw mobility datasets. This autoencoder approach was able to more accurately

uncover community structures which identifies groups of users sharing common geo-

graphical interests and temporal relationships.

The proposed protocol used the community information and user relationship to make

an efficient next hop selection decisions. Through extensive experimentation using one

synthetic and two real mobility records representing diverse urban mobility scenarios we

show the effectiveness of the proposed opportunistic protocol.

Our results show that the proposed deep autoencoder community based routing pro-

tocol lead to an improvement of the performance of the studied network metrics, i.e.

delivery probability, overhead ratio, hop count, latency and dropped messages when com-

pared with Epidemic and Prophet routing protocols. Finally, we show that DACCOR is

able to outperform other opportunistic forwarding protocols, not only on the networks

metrics, but also in the fact that, by using less bandwidth and less radio, DACCOR is able

to dramatically decrease energy consumption, optimizing battery life.
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6. Conclusion and Future Work

The contributions of this thesis can be divided into three parts: (1) a study on the Scale-

Free Properties of Human Mobility, (2) the identification of User Communities Based on

Geographical Preferences and Its Applications to Urban and Environmental Planning, and

(3) the proposal of a Routing Protocol and Data Dissemination scheme for Opportunistic

Networking. In the following, we summarize these contributions, providing also some

possible research perspectives of each of the carried studies.

6.1Scale-Free Properties of Human Mobility

In this thesis, we started by showing the scale-free properties of some important hu-

man mobility characteristics, namely spatial node density and mobility degree. In our

study we analyzed a set of real mobility traces collected in diverse scenarios motivated by

ITS, namely a city park, a University campus, and taxis in the downtown area of a major

city. We demonstrated that both spatial node density and mobility degree exhibit power

law behavior which then allowed us to derive analytical models for these two mobility

features. We showed that the proposed analytical model closely matches the empirical

data extracted from the real mobility traces. Another contribution of our work was to

use the proposed analytical models for spatial node density and mobility degree to build

a waypoint-based mobility regime capable of generating synthetic mobility traces whose

spatial node density and mobility degree closely resembles the ones measured in real hu-

man mobility scenarios. As such, the proposed mobility regime can be employed to test

and evaluate ITS services and protocols. Finally, using a network simulator, we evaluated

a wireless ad-hoc network routing protocol and showed that its performance under our

mobility regime and under the real trace is very similar.

SFSM model has the ability to express analytically the behavior of users to tending

to congregate and form clusters, where some regions may be quite dense while others
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completely deserted. Another interesting behavior found by SFSM is that there are few

nodes that have very high mobility visiting many places in the trace, while the majority

of users have a sedentary behavior, that is, they visit only few places.

In this work we presented simulation scenarios that demonstrate the independence of

our model from real trace parameters and showed how one can use the proposed mo-

bility model to evaluate their proposals. However, we did not evaluate the proposed

mobility model in other applications. Mobile communication systems extensively use

mobility models for predicting future user location. Also, mobility models are crucial

to evaluate and test smart city applications using vehicle-to-vehicle (V2V) and vehicle-

to-infrastructure (V2I) in both real testbed, and simulated scenarios. Those aspects are

becoming highly relevant, considering the growing of vehicles with V2V communication

capabilities, sensors and smartphones. Also, the network simulations used only one real

scenario (Quinta trace) and as future work, other scenarios could be considered.

6.2Identifying User Communities Based on Geographical Preferences and Its Appli-
cations to Urban and Environmental Planning

Our findings on the power law behavior of user density and mobility degree motivated

further investigations, as it has considerable impact on fundamental network properties

such as connectivity and capacity. How to design a practical and effective forwarding

strategy in opportunistic networks? In order to answer that, we applied the principles of

SFSM to identify communities based on the real behavior described by our proposed ana-

lytical model. Our proposed methodology identifies user communities based on users’ ge-

ographical preferences and mobility attributes, such as speed and pause time. We showed

that the proposed methodology is able to identify similarities and dissimilarities between

users belonging to the same and different communities respectively, comparing four clus-

tering algorithms.

We further improved our methodology by proposing a deep autoencoder-based ap-

proach to pre-process raw mobility datasets that is able to more accurately uncover com-

munity structures which identifies groups of users sharing common geographical inter-

ests and temporal relationships. The proposed methodology uses deep autoencoders for

dimensionality reduction and extraction of latent non-linear representations of the mo-

bility data, and then clusters the coded representation of mobility data, given by the au-

toencoders. Through extensive experimentation using three real mobility records, repre-

senting diverse urban mobility scenarios, we showed the effectiveness of the proposed
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autoencoder-based methodology. Our results show that automatically extracted features

lead to an improvement of the performance of spatial similarity metrics while increas-

ing contact time for users in the same community from 30% up to 150%. Moreover, the

proposed approach reduces the complexity of the feature design task.

According to the results presented in this thesis, we notice that users belonging to

the same community spend more time in certain geographic regions, which increases

the probability of same community user meeting, when compared to users of different

communities. We therefore expect that users belonging to the same community are po-

tential opportunistic message forwarders. Also from the observation of the obtained re-

sults, users from different communities visit different geographic regions, although there

is some intersection in some points. Since nodes in the same community tend to have a

high frequency of encounters, the process of finding the best relay node and a good rout-

ing strategies can be improved by taking this social structure into account. Moreover, the

control messages overhead as well as the node storage table can be reduced if we consider

only the group information instead of the individual.

However, once mobility traces do not normally (or very rarely) present community

labels or ground truth, we validated our proposal by using several index metrics (SSIM,

MSE, and ARI), visualization (PCA and t-SNE) and the contact time between nodes be-

longing to the same community. As such, as a proposal for future work, we could use

social traces and associate it with mobility traces to look for correlations between the

communities extracted by geographical location and the relationships found in social net-

works.

6.3Routing Protocol and Data Dissemination for Opportunistic Networking

Finally, we proposed a forwarding protocol that can assist in the choice of relay nodes

considering the contact opportunities between nodes in opportunistic networks. DAC-

COR, a deep autoencoder community based routing protocol used the community infor-

mation and user relationship to make efficient next hop selection decisions. Through

extensive experimentation using one synthetic and two real mobility records representing

diverse urban mobility scenarios we show the effectiveness of the proposed opportunistic

protocol. Our results showed that the proposed deep autoencoder community based rout-

ing protocol lead to an improvement of the performance of the studied network metrics,

i.e. delivery probability, overhead ratio, hop count, latency and dropped messages when

compared with Epidemic and Prophet routing protocols.
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Many message dissemination schemes have been proposed in the literature, however

it is still challenging to disseminate messages to a target area in some environments. For

example, in the context of urban transportation management, nodes can gather and locally

processes content and then delivery it to a server in the cloud. Servers can be responsible

for processing real time traffic data to take action when needed, e.g. incident response.

In order to forward data, these nodes can rely on opportunistic connectivity with other

various nodes (mobile devices, vehicles, smart-phones, etc.) and communicate with the

application running in the cloud via multi-hop. Thus, as future investigation, a message

dissemination scheme could be design to take advantage of the node degree behavior

identified in SFSM and better select forwarding nodes to spread the message in a given

urban area.

Also, the current design of the protocol only considers unicast message delivery.

There may be environments where multicast message delivery is required. As future

work, it will be interesting to explore the capability of DACCOR in delivering messages

for a groups of nodes. Finally, we investigated DACCOR considering a pre-define au-

toencoder architecture and a specified number of communities. In the future, we could

explore the impact of vary this hyper-parameters on evaluating the protocol.
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