
UNIVERSIDADE FEDERAL DO ESTADO DO RIO DE JANEIRO

CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

Real-Time Travel Mode Detection and Trip Purpose Prediction with Smartphone

Sensing and Machine Learning

Elton Figueiredo de Souza Soares

Orientador

Dr. Carlos Alberto Vieira Campos

Co-orientador

Dr. Sidney Cunha de Lucena

RIO DE JANEIRO, RJ - BRASIL

FEVEREIRO DE 2019

Catalogação informatizada pelo(a) autor(a)

F676
Figueiredo de Souza Soares, Elton
 Real-Time Travel Mode Detection and Trip Purpose
Prediction with Smartphone Sensing and Machine
Learning / Elton Figueiredo de Souza Soares. -- Rio
de Janeiro, 2019.
 143 f

 Orientador: Carlos Alberto Vieira Campos.
 Coorientador: Sidney Cunha de Lucena.
 Dissertação (Mestrado) - Universidade Federal do
Estado do Rio de Janeiro, Programa de Pós-Graduação
em Informática, 2019.

 1. Detecção de Modo de Transporte. 2.
Sensoriamento Móvel. 3. Mobilidade Inteligente. 4.
Sistemas de Transporte Inteligentes. 5. Aprendizado
de Máquina. I. Vieira Campos, Carlos Alberto,
orient. II. Cunha de Lucena, Sidney, coorient. III.
Título.

Dedico essa dissertação à todos que de

alguma forma colaboraram para que eu

concluísse este trabalho. Seja por terem

colaborado diretamente com a realização

da pesquisa, seja por terem colaborado

indiretamente me ensinando, orientando,

apoiando, incentivando e/ou inspirando

com seus exemplos de dedicação, perse-

verança e sabedoria.

i

Agradecimentos

Agradeço a minha família, especialmente aos meus pais, Jussara e Ecio, por me darem

a educação básica necessária para chegar a uma universidade e o apoio necessário para

concluir mais esta etapa de minha formação acadêmica e profissional.

Agradeço a UNIRIO, ao corpo docente e servidores pela excelência e qualidade no

ensino e serviços prestados.

Agradeço ao meu orientador, Dr. Carlos Alberto Vieira Campos, e co-orientador Dr.

Sidney Cunha de Lucena pela paciência na orientação, dedicação e incentivo prestados

durante mais esta etapa de minha jornada acadêmica.

Agradeço aos meus colegas de pós-graduação, em especial ao Helio de Paula Moura,

Carlos Alvaro de Macedo Soares Quintella, Nicomar Fernandes de Oliveira e Tiago do

Vale Saraiva, pela colaboração e apoio dispensados durante estes dois anos de convivên-

cia.

Agradeço ao professores membros da banca examinadora, Dr. Carlos Eduardo Ribeiro

de Mello e Dr. Shahrokh Valaee, por aceitarem o convite e pela disposição em avaliar e

contribuir com este trabalho.

Agradeço a todos os voluntários que participaram dos testes de campo da aplicação

desenvolvida neste trabalho. Sem a colaboração de vocês, trabalhos como este não seriam

possíveis.

Agradeço à minha eterna namorada e futura esposa, Carla Santos Franco, por estar ao

meu lado durante esse desafio e por sempre me incentivar a seguir em frente.

Por fim, gostaria de agradecer à CAPES pelo apoio financeiro que me permitiu desen-

volver uma pesquisa de mestrado de alta qualidade.

ii

Soares, Elton Figueiredo de Souza Real-Time Travel Mode Detection with Smart-
phone Sensing and Machine Learning. UNIRIO, 2019. 143 páginas. Dissertação de

Mestrado. Departamento de Informática Aplicada, UNIRIO.

RESUMO

A detecção dos modos dos transporte utilizados e a predição dos objetivos de viagem,

através de dados de sensores de smartphones, surgiram como dois desafios de pesquisa

nos últimos anos. Ambos os problemas foram profundamente investigados isoladamente,

enquanto o problema de inferir modo e propósito ao mesmo tempo e, mais especifica-

mente, usando o mesmo algoritmo de pré-processamento foi menos explorado. Além

disso, poucos estudos apresentaram soluções capazes executar a detecção de modos de

transporte do usuário em tempo real, e um conjunto ainda menor apresentou uma avali-

ação dessas soluções de maneira realista. Enquanto isso, alguns dos estudos anteriores

afirmam as que as soluções de reconhecimento de atividades "de prateleira", não apresen-

tam bom desempenho na tarefa de detecção do modo de transporte, embora muitos deles

não apresentem uma evidência quantitativa de seu mau desempenho.

Assim, neste trabalho, foram propostas três técnicas de detecção de modo de trans-

porte em tempo real, utilizando diferentes combinações de sensores de smartphone, e uma

técnica para detecção conjunta de modo de transporte e predição de propósito da viagem

usando um único algoritmo de pré-processamento, em tempo real. Nós avaliamos as téc-

nicas propostas e uma solução de reconhecimento de atividades empiricamente, através

de testes de campo e experimentos de validação cruzada com conjuntos de dados de mo-

bilidade privados e públicos.

Palavras-chave: Detecção de Modo de Transporte, Sensoriamento Móvel, Mobil-

idade Inteligente, Sistemas de Transporte Inteligentes, Aprendizado de Máquina, In-

teligência Artificial.

iii

ABSTRACT

The detection of the travel modes used and, the prediction of trip purposes, through

smartphone sensors data have emerged as two research challenges in recent years. Both of

these problems have been deeply investigated in isolation, while the problem of inferring

mode and purpose at the same time and, more specifically, using the same preprocessing

algorithm has been less explored. Also, few studies presented solutions that can execute

the detection of user travel modes in real-time, and even fewer have presented the eval-

uation of these solutions in a realistic manner. Meanwhile, some of the previous studies

claim that off-the-shelf activity recognition solutions, do not perform well in the travel

mode detection task, although many of them do not present a quantitative evidence of

their bad performance.

Thus, in this work, we propose three techniques for real-time travel mode detection,

using different combinations of smartphone sensors, and one technique for join travel

mode detection and trip purpose prediction using a single preprocessing algorithm, in

real-time. We empirically evaluated the proposed techniques and an off-the-shelf activity

recognition solution using field tests and cross-validation experiments with private and

public mobility datasets.

Keywords: Travel Mode Detection, Mobile Sensing, Smart Mobility, Intelligent Trans-

portation Systems, Machine Learning, Artificial Intelligence

iv

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Justification . 3

1.3 Objectives . 3

1.3.1 Main Objective . 3

1.3.2 Research Questions . 4

1.4 Contributions . 4

1.5 Structure . 5

2 Theoretical Background 7

2.1 Feature Engineering Techniques for building Classification Models . . . 8

2.1.1 Summary Statistics . 8

2.1.1.1 Location . 8

2.1.1.2 Spread . 9

2.1.1.3 Shape . 10

2.1.1.4 Dependence . 11

2.1.2 Time and Frequency Domain 12

2.1.3 Principal Component Analysis 13

v

2.1.4 Recursive Feature Elimination 13

2.2 Machine Learning Techniques for building Classification Models 13

2.2.0.1 Logistic Regression 13

2.2.0.2 K-Nearest Neighbours 14

2.2.0.3 Naive Bayes . 15

2.2.0.4 Decision Trees . 15

2.2.0.5 Adaptive Boosting 16

2.2.0.6 Random Forest . 17

2.2.0.7 Support Vector Machine 17

2.2.0.8 Neural Networks . 18

2.2.0.9 Deep Neural Networks 19

2.2.0.10 Recurrent Neural Networks 20

2.2.1 Long-Short Term Memory . 21

2.2.2 Gated Recurrent Unit . 22

2.3 Automated Machine Learning Techniques for building Classification

Models . 22

2.3.1 Hyperparameter Optimization 22

2.3.1.1 Grid Search . 23

2.3.1.2 Random Search . 23

2.3.1.3 Bayesian Optimization 23

2.3.2 Combined Algorithm Selection and Hyperparameter Optimization 23

2.3.3 Global Optimization . 24

2.4 Performance Metrics for evaluating Classification Models 25

2.4.1 Accuracy . 25

2.4.2 Precision . 26

vi

2.4.3 Recall . 26

2.4.4 F1-Score . 26

2.4.5 Kappa Coefficient . 26

3 Real-Time Travel Mode Detection with Location Sensors 27

3.1 Introduction . 27

3.2 Related Works . 28

3.3 Proposed Solution . 31

3.4 Prototype Development . 33

3.5 Prototype Evaluation . 35

3.5.1 Methods . 35

3.5.2 Data . 36

3.5.3 Results . 37

3.5.4 Discussion . 40

3.6 ActivityRecognition API Evaluation 41

3.6.1 Methods . 41

3.6.2 Data . 45

3.6.3 Results . 46

3.6.4 Discussion . 47

3.7 Conclusion . 47

4 Real-Time Travel Mode and Trip Purpose Prediction with Location Sensors 48

4.1 Introduction . 48

4.2 Related Works . 49

4.2.1 Travel Mode Detection . 49

4.2.2 Trip Purpose Prediction . 50

vii

4.2.3 Joint Travel Mode and Trip Purpose Identification 51

4.3 Study Data . 52

4.4 Proposed Solution . 55

4.4.1 Preprocessing . 56

4.4.2 Classification . 60

4.5 Performance Evaluation . 61

4.5.1 Evaluation Metrics . 62

4.5.2 Proposed Solution with Random Search 62

4.5.3 Proposed Solution with Bayesian Optimization 62

4.5.4 Baseline Solution . 63

4.6 Discussion . 64

4.6.1 Travel Mode Detection . 65

4.6.2 Trip Purpose Prediction . 65

4.6.3 Time Window Size . 66

4.7 Conclusions . 66

5 Real-Time Travel Mode Detection with Multiple Sensors 68

5.1 Introduction . 68

5.2 Related Works . 70

5.3 Travel Mode Detection Technique used in a Public Benchmark Dataset . 73

5.3.1 Travel Mode Detection Technique 73

5.3.2 Public Benchmark Dataset . 74

5.3.3 Discussion . 75

5.4 Feature Engineering . 77

5.5 Evaluation Experiments . 77

viii

5.5.1 Obtained results . 80

5.5.2 Discussion . 82

5.5.2.1 Classification Performance 82

5.5.2.2 Classification Cost 82

5.5.2.3 PCA Impact . 83

5.6 Conclusion . 84

6 Real-Time Travel Mode Detection with Recurrent Neural Networks 85

6.1 Introduction . 85

6.2 Related Works . 86

6.3 Proposed Method . 89

6.3.1 Generic Framework for Travel Mode Detection 89

6.3.2 Online Travel Mode Detection with LSTM 90

6.3.3 Implementation Design . 92

6.4 Experiments . 93

6.4.1 Settings . 94

6.4.2 Details of Training and Implementation 95

6.4.3 Results Analysis . 96

6.4.3.1 Five Second Time Windows 97

6.4.3.2 One Second Time Windows 99

6.4.3.3 Ten Second Time Windows 101

6.4.3.4 Summary and Discussion 103

6.5 Conclusion . 105

7 Conclusions and Future Work 107

ix

List of Figures

2.1 Visual representation of a Logistic Regression model for travel mode clas-

sification. Adapted from https://commons.wikimedia.org. 14

2.2 Visual representation of a KNN model for travel mode classification. Adapted

from https://commons.wikimedia.org. 15

2.3 Visual representation of a Decision Tree model for travel mode classifi-

cation. Adapted from https://www.lucidchart.com. 16

2.4 Visual representation of a Support Vector Machine model for binary travel

mode classification using only Speed and Acceleration as input features.

Adapted from https://commons.wikimedia.org. 17

2.5 Visual representation of a Multilayer Neural Network model for travel

mode classification with one hidden layer. Adapted from https://commons.

wikimedia.org. 18

2.6 Visual representation of a Deep Feedforward Neural Network model for

travel mode classification with three hidden layers. Adapted from https:

//commons.wikimedia.org. 20

2.7 Visual representation of a Recurrent Neural Network model for travel

mode classification. Adapted from https://commons.wikimedia.org. . 21

2.8 Visual representation of a LSTM based RNN for travel mode classifica-

tion. Adapted from https://commons.wikimedia.org. 21

2.9 Visual representation of a GRU based RNN for travel mode classification.

Adapted from https://commons.wikimedia.org. 22

x

https://commons.wikimedia.org
https://commons.wikimedia.org
https://www.lucidchart.com
https://commons.wikimedia.org
https://commons.wikimedia.org
https://commons.wikimedia.org
https://commons.wikimedia.org
https://commons.wikimedia.org
https://commons.wikimedia.org
https://commons.wikimedia.org
https://commons.wikimedia.org

2.10 Automated Machine Learning workflow implemented in AutoSklearn.

Diagram adapted from [48]. 25

3.1 Proposed Real-Time Travel Mode Detection Solution. *MLP - Multilayer

Perceptron, SVM - Support Vector Machine, BN - Bayesian Net, DT -

Decision Table . 32

3.2 CityTracks-RT application components. 34

3.3 CityTracks-RT application workflow. 35

3.4 Spatial visualization of users’ displacement on the Rio de Janeiro metropoli-

tan area during the use of CityTracks-RT application. 36

3.5 Locations captured x locations generated per travel mode (a). Locations

captured x locations generated by precision range in meters (b). Cumula-

tive frequency of locations collected by precision range (c). 38

3.6 Component diagram of the CityTracks-AWARE application. 43

3.7 Diagram of collection server components. 43

3.8 Sequence diagram of the processing of data collected by the sensors in

the CityTracks-AWARE app when sending to the server (Before). 44

3.9 Sequence diagram of the processing of data collected by the sensors in

the CityTracks-AWARE app when sending to the server (After). 45

3.10 Inferences made by travel mode collected. 46

4.1 Frequency of location traces collected by travel mode (a) and trip purpose

(b). 53

4.2 Projection of the location traces coordinates on the Rio de Janeiro metropoli-

tan area (a) and Downtown region (b) map. 55

4.3 Overview of travel mode detection and trip purpose prediction solution. . 55

4.4 Locations frequency distribution by measurement precision: (a) All lo-

cation traces, (b) Locations within 200 meters threshold, (c) Locations

within 100 meters threshold, (d) Locations within 50 meter threshold (e),

Locations within 25 meters threshold (f), Locations within 12.5 meters

threshold (g). 57

xi

4.5 Scatter plot for travel mode relationships with maximum calculated ac-

celeration (a) and mean measured speed (b). Scatter plots for trip purpose

relationships with travel mode (c) and weekday (d). 59

4.6 Steps used to find the best classifiers for travel mode detection and trip

purpose prediction. 60

4.7 Performance metrics per window size for travel mode detection (a) and

trip purpose (b). 67

5.1 Preprocessing steps of US-TransportationMode travel mode detection tech-

nique. Adapted from http://cs.unibo.it/projects/us-tm2017/. . . 74

5.2 Histogram of total number of samples collected by travel mode (a) and

user (b). 75

6.1 Proposed offline training and offline/online detection mechanism. 90

6.2 TMD-LSTM model architecture. 91

6.3 Travel Mode Inference using a trained TMD-LSTM. 92

6.4 Cloud-based and In-device real-time travel mode detection with TMD-

LSTM. 93

6.5 Sample distributions per travel mode (a) and user (b). 94

6.6 Evaluation experiments process overview. Window size = 1 second, #S =

80566; Window size = 5 seconds, #S = 16041; Window size = 10s, #S =

7967. 95

6.7 RNNs accuracy (a) and size (b) obtained for multiple hyperparameter con-

figurations, using 5 second time windows. 98

6.8 (D)FNNs accuracy (a) and size (b) obtained for multiple hyperparameter

configurations, using 5 second time windows. 99

6.9 RNNs accuracy obtained for multiple hyperparameter configurations, us-

ing 1 second time windows. 100

6.10 (D)FNNs accuracy obtained for multiple hyperparameter configurations,

using 1 second time windows. 101

xii

http://cs.unibo.it/projects/us-tm2017/

6.11 RNNs accuracy obtained for multiple hyperparameter configurations, us-

ing 10 second time windows. 102

6.12 (D)FNNs accuracy obtained for multiple hyperparameter configurations,

using 10 second time windows. 103

6.13 Accuracy and model size of best performing configurations of each ML

technique for each window size. 103

6.14 Average training and testing confusion matrices per-fold of best perform-

ing neural network configurations with 5, 1 and 10 second time windows.

Predicted labels are represented as columns and true labels are repre-

sented as rows. 106

xiii

List of Tables

3.1 Summary of related works on travel mode detection through smartphone

sensors. *Acc - Aceleromenter, Gyr - Gyroscope, Mag - Magnetometer,

Cellular - Cellular Networks . 31

3.2 Data collection summary statistics per user. *#H - Hours of data collec-

tion, #C - Number of chunks collected, #L - Number of locations col-

lected, MP - Mean location precision, SD - Precision standard deviation,

%C - Percentage of locations captured via FusedLocationAPI, %G - Per-

centage of locations generated by interpolation. 39

3.3 Confusion matrix of the motorized and non-motorized chunk classifica-

tion for the SVM classifier. 39

3.4 Confusion matrix of motorized mode classification for the Decision Table

classifier. 39

3.5 Confusion matrices of non-motorized chunk classification for Decision

Table and Bayesian Net classifiers. 40

3.6 Confusion matrix of walking, biking, bus and car classification with Mul-

tilayer Perceptron. 40

3.7 Summary of mean per class accuracy, precision, recall and F1-score of

each classifier. 40

3.8 Sensors supported by the CityTracks-AWARE application and their mini-

mum sampling frequencies. * Sampling frequency does not apply because

these sensors capture the data reactively. 42

3.9 Data collected by device. 45

xiv

3.10 Confusion matrix grouping the data collected within the five activity classes

recognized by the ActivityRecognition API. 46

3.11 Performance metrics for each activity class recognized by the Activi-

tyRecognition API. *TP - True Positives, FP - False Positives. 46

4.1 Descriptive statistics of location traces by device. 54

4.2 Number of location samples removed by each filtering technique. 56

4.3 Pearson correlation tests of chunk categorical attributes. 58

4.4 Performance metrics of the best classifiers found through Random Search

on the test set for travel mode detection. 62

4.5 Performance metrics of the best classifiers found through Random Search

on the test set for trip purpose prediction. 62

4.6 Performance metrics of the best classifiers found through Bayesian Opt.

on the test set for travel mode detection. 63

4.7 Performance metrics of the best classifiers found through Bayesian Opt.

on the test set for trip purpose prediction. 63

4.8 Average per fold performance metrics of travel mode detection on the

10-fold cross-validation. 63

4.9 Average per fold performance metrics of trip purpose prediction on the

10-fold cross-validation. 64

4.10 10-fold cross-validation performance metrics of the classifiers used in the

CityTracks-RT application. 64

4.11 Performance metrics of the classifiers used in the field tests of CityTracks-

RT application. 64

4.12 Confusion matrix of best performing travel mode classifier. 65

4.13 Confusion matrix of best performing trip purpose classifier. 66

5.1 Summary of related works. 73

5.2 Sensors considered on each Sensor Set. 75

xv

5.3 US-TransportationMode original performance evaluation results. 76

5.4 Sensors on each cross-validation experiment and respective features ex-

tracted from 5 second time windows. 78

5.5 Hyperparameter configurations for each machine learning algorithm used

for each sensor set. 79

5.6 Performance metrics of all machine learning algorithms for scenarios 1, 2

and 3. *DT - Decision Tree, RF - Random Forest, SVM - Support Vector

Machine, NN - Neural Networks, ASE - AutoSklearn Ensemble. 80

5.7 Performance metrics of all machine learning algorithms for scenarios 4,

5 and 6. 81

5.8 Performance metrics of all machine learning algorithms for scenarios 7,

8 and 9. 81

5.9 Performance metrics of all machine learning algorithms for scenarios 10,

11 and 12. 81

5.10 Mean split fit and score time for each scenario. 84

6.1 Summary of related works. *GPS - Global Positioning System, CDR -

Call Data Records **DL Model - Deep Learning Model, CNN - Convo-

lutional Neural Networks, DNN - Deep Neural Networks, LSTM - Long-

Short Term Memory, IO-HMM - Input Output Hidden Markov Mod-

els, RNN - Recurrent Neural Networks, SAE - Stacked Autoencoders,

CGRNN - Control Gate based Recurrent Neural Network 87

6.2 Best features selected from the multiple sensors. 96

6.3 Average accuracy (A), precision (P), recall (R), F1-score (F1) , kappa

coefficient (Kappa) and model size (Size) per-fold obtained by the best

configurations of each ML algorithm tested using 5 second time windows. 97

6.4 Average accuracy (A), precision (P), recall (R), F1-score (F1) , kappa

coefficient (Kappa) and model size (Size) per-fold obtained by the best

configurations of each ML algorithm tested using 1 second time windows. 99

xvi

6.5 Average accuracy (A), precision (P), recall (R), F1-score (F1) , kappa

coefficient (Kappa) and model size (Size) per-fold obtained by the best

configurations of each ML algorithm tested using 10 second time windows.101

xvii

1. Introduction

Population growth in urban centers presents many challenges in the development of

smarter cities [25]. Urban sensing research has tried to provide means for urban planners

to understand cities dynamics, in order to address those challenges, through optimized

provision of public services and infrastructure management. Another research field that

has a similar objective, with special focus on the mobility component of smart cities [57],

is the field of Intelligent Transportation Systems (ITS).

Smartphone popularization has enabled the development of many ITS solutions based

on participatory and opportunistic sensing [78]. Its growing set of sensors, computation

power and battery autonomy allow the continuous sensing of citizens mobility behaviour,

surrounding environment and social interactions. This allowed the emergence of inno-

vative applications based on contextual information (i.e., context-aware applications) ex-

tracted by specialized software from sensory data (i.e., virtual sensors [71]).

The identification of users’ travel modes (i.e., modes of transportation) through their

smartphone sensors is a growing topic of research, with many applications in the field of

Smart Mobility and Internet of Things (IoT), specially with respect to ITS [126]. With

a dataset of citizens travel modes in hand, governments are allowed to better understand

the usage of transportation infrastructures, where knowledge of mobility patterns among

citizens can be useful for predicting demand over modes of transportation in urban cen-

ters [107]. It also allows retailers and other individual consumer-focused businesses to

better characterize their customers and correlate their consumption patterns with mobil-

ity behaviour, in addition to other existing contextual information, like socioeconomic

attributes.

In particular, online (i.e., real-time) travel mode detection can provide context-awareness,

which is useful for Location-Based Services (LBS) [106], in order to customize informa-

tion delivery based on users’ needs and possibilities of interaction. It may apply as well

1

to the use cases described for offline detection, depending on the frequency in which the

travel mode information needs to be available for the final application.

A fully autonomous ITS, for example, may utilize citizens travel mode information

to increase the number of buses circulating on certain parts of the city in high-demand

periods and decrease it when the demand for this transportation mode is low. If one uses

offline travel mode detection for this task, it would be able to adapt the system based on

historical patterns, such as specific hours of the day when people tend to move on and

off to work. However, if online travel mode detection is employed, the system would

be able to automatically respond to more infrequent events that may increase or decrease

demand for a specific mode of transportation, such as a sports event or a music concert,

for example.

1.1 Motivation

Among the several features that may be used to describe mobility patterns, the travel

mode and trip purpose specifically contribute to their better understanding, thus benefiting

the generation of automatic (or semi-automatic) travel diaries [100], recommendation

systems, personal assistants and other mobile data collection applications [117, 118].

Detecting which mode of transportation and trip purpose are being used by citizens

through their smartphone sensors is a hard task, if we consider all the range of possi-

ble transportation modes and trip purposes available in urban centers. There are many

commercial solutions that tackle instances of these problems using historical information

from user mobility behaviour and/or rule-based classification schemes, like Google Maps

Timeline 1, for example.

These solutions do not provide, however, a generic technique that can be used to

infer the mode and the purpose of user trips using only a small amount of user data

and without requiring a connection to a cloud server to process the information captured

through smartphone sensors. Besides, most of these solutions are able to classify only a

subset of all the modes and purposes that can be inferred from user mobility data, limiting

their usefulness for a broader range of use cases.

1https://www.google.com.br/maps/timeline

2

1.2 Justification

The detection of the travel modes used and, the prediction of trip purposes, through

smartphone sensors data have emerged as two research challenges in recent years. Both of

these problems have been deeply investigated separately, while the problem of inferring

mode and purpose at the same time and, more specifically, using the same preprocessing

algorithm has been less explored.

Also, few studies presented solutions that can execute the detection of user travel

modes in real-time, and even fewer have presented the evaluation of these solutions in a

realistic manner. Meanwhile, some of the previous studies claim that off-the-shelf activity

recognition solutions, do not perform well in the travel mode detection task, although

many of them do not present a quantitative evidence of their bad performance.

1.3 Objectives

This section presents this work main objective and the research questions that will be

addressed in the following chapters of this dissertation.

1.3.1 Main Objective

This work’s main objective is to develop solutions for the problems of real-time travel

mode detection and trip purpose prediction. These solutions must be able to identify the

mode of transportation and the purpose of the trips made by smartphone users, in real-

time, with a high accuracy and low resource consumption.

The accuracy of this identification is essential for the context-aware applications that

might use these contextual-information for delivering customized messages and services

to the user. Also, ITS applications may use the inferred travel modes and trip purposes

for infrastructure management and adaptation, which makes precision and recall of those

inferences crucial for their success.

The low resource consumption is another critical requirement of the ideal solution, be-

cause it cannot consume a high proportion of the computational resources available on the

smartphone, as these are already disputed by the other applications and services. Besides,

smartphone resources might be very limited, depending on the model and vendor. There-

fore, the optimal solution should be able to run on any smartphone device compatible with

the context-aware applications it might serve.

3

1.3.2 Research Questions

The present work will try to answer the following research questions:

1. Can off-the-shelf activity recognition solutions perform real-time travel mode de-

tection satisfactorily with regards to accuracy, precision and recall of the inferences

made?

2. Is detecting a person’s mode of transportation through statistical features extracted

from time series of smartphone location sensors measurements, in real-time, truly

possible?

3. How can we detect the mode of transportation and the purpose of trips, in real-time,

using statistical features extracted from time series of smartphone location sensors

measurements?

4. Can automated machine learning help us generate more accurate classification mod-

els for real-time travel mode detection based on smartphone sensor measurements?

5. Does the use of dimensionality reduction techniques upon the features extracted

from the time series of multiple smartphone sensor measurements reduce the cost of

training and running travel mode classifiers without substantially reducing accuracy,

precision and recall?

6. Do higher order statistical features of the time series of smartphone sensors mea-

surements, allow a better identification of travel modes, in real-time, with regards

to accuracy, precision and recall?

7. Can recurrent neural networks be used to generate more efficient real-time travel

mode detection models than other state-of-the-art machine learning techniques,

with regards to classification accuracy and model size trade-off?

1.4 Contributions

The main contributions of this work are:

1. A real-time travel mode detection technique that uses features extracted from time

series of smartphone GPS, WiFi and Cellular Network sensors measurements and

supervised machine learning algorithms to train travel mode classification models

4

that rely only on smartphone hardware resources, without the need of internet con-

nectivity.

2. A prototype implementation of the proposed technique as a mobile application on

Android platform, namely CityTracks-RT, and the experimental analysis of in the

field performance of the proposed solution in the metropolitan region of Rio de

Janeiro.

3. A mobile application for multi-sensor data collection and real-time travel mode

detection, namely CityTracks-AWARE, using an off-the-shelf activity recognition

solution and the experimental analysis of in the field performance of the solution in

the metropolitan area of Rio de Janeiro.

4. A method for building real-time travel mode detection and trip purpose prediction

models using features extracted from time series of smartphone location measure-

ments and the experimental analysis of the proposed method based on quantitative

metrics obtained through cross-validation using real smartphone data collected dur-

ing CityTracks-RT evaluation experiments.

5. An experimental analysis of the improvement obtained in real-time travel mode de-

tection performance, when using automated machine learning techniques, based on

quantitative metrics obtained through cross-validation using real smartphone data

from a public travel survey dataset, namely TMDataset [26].

6. A real-time travel mode detection method based on recurrent neural networks and

features extracted from time series of multiple smartphone sensor measurements,

namely TMD-LSTM, and the experimental analysis of the proposed technique based

on quantitative metrics obtained through cross-validation using real smartphone

data from TMDataset [26].

1.5 Structure

Chapter 2 is an overview of the main theoretical background regarding the classifi-

cation models used for travel mode detection and trip purpose prediction, the machine

learning algorithms used to build these models, the engineering techniques used to gener-

ate features for training these models and the evaluation metrics used for evaluating these

models. Chapter 3 answers research questions 1 to 2 and presents the contributions 1 to

5 of this work. Chapter 4 answers research question 3 and presents the contributions 6

to 7. Chapter 5 answers research questions 4 to 6 and presents the contributions 8 to 9.

5

Chapter 6 answers research question 7 and presents the contributions 10 to 12. Finally,

chapter 7 presents the main conclusions and suggestions of future work.

6

2. Theoretical Background

The task of detecting the travel modes people use in their daily commute, is funda-

mentally a classification task, in which a computer system must classify which mode of

transportation people are using given a set of observations from smartphone sensors, GPS

logs or any other source of data. Therefore, in order to build a computer system that is

able to perform this task, one must model the patterns inherent to the observations of each

transportation mode in order to correctly identify them. During a long time, this mod-

elling was done through manual data analysis or using rule extraction techniques. How-

ever, with the advancements in machine learning, more specifically statistical learning,

automatic generation of these models based on observations is now possible and feasible.

In this work, we explore the use of machine learning techniques for building real-time

travel mode detection models.

Therefore, in the following sections we present the main Feature Engineering, Ma-

chine Learning and Automated Machine Learning techniques used for building those

models as well as the main performance metrics used in their evaluation and compari-

son. As a disclaimer, the terms online detection and real-time detection are used in the

remainder of this work to refer to the process of inferring the modes of transportation

in the shortest period of time possible, which should be not be higher than a couple of

minutes given the state-of-the-art solutions [126].

It is important to clarify that every supervised machine learning model can perform

online classification, as it attributes labels to unseen samples that are fed into the model.

Therefore, the main difference between offline and online travel mode detection is the

fact that typical offline approaches will process a large amount of travel data to identify

each individual trip and tripleg [100] in order to classify which travel modes were used

on a whole trip or tripleg, whose duration can range from minutes to hours, or even days.

In opposition to that, online detection approaches must be capable of inferring the modes

of transportation used in segments or instants of a tripleg. Online detection, however,

7

should not be confused with online training [113] of machine learning models, as the

latest requires the classification model to be updated at every new sample it classifies.

Online training is also a desired feature for travel mode detection models, but it involves

additional concerns with regards to catastrophic forgetting [61] and concept drift prob-

lems [93].

Provided that, we will use the terms online detection and real-time detection to refer

to solutions where a machine learning model is trained once with a static dataset, and then

used to perform the classification of travel modes used in small segments or instants of

trips, based on features extracted from short time series of smartphone sensor measure-

ments.

2.1 Feature Engineering Techniques for building Classification Models

One of the main challenges in solving problems with the use of machine learning

algorithms is extracting the most relevant features from the raw data in order to train a

classification or prediction model. This challenge is addressed by a process called Fea-

ture Engineering, and involves construction, combination, transformation and selection of

features [85]. This often requires domain specific knowledge and might be more relevant

to the final model performance than the machine learning algorithm itself [35].

2.1.1 Summary Statistics

In descriptive statistics, summary statistics are used to summarize a set of observa-

tions, in order to communicate the largest amount of information as simply as possi-

ble [103]. Observations can be summarized in terms of:

• location i.e., central tendency

• spread i.e., statistical dispersion

• shape i.e., shape of the distribution

• dependence i.e., statistical dependence

2.1.1.1 Location

In summary statistics, the main measures of location are the arithmetic mean, median,

mode, and interquartile mean. The arithmetic mean, or average, is the sum of a set of

8

numbers divided by the count of numbers in the set [68]. The median is the value sepa-

rating the higher half from the lower half of a data sample (a population or a probability

distribution). For a data set, it may be thought of as the “middle” value [86]. The mode

of a set of data values is the value that appears most often. It is the value xi at which its

probability mass function takes its maximum value. In other words, it is the value that is

most likely to be sampled [63]. The interquartile mean is a statistical measure of central

tendency based on the truncated mean of the interquartile range [137].

Formally, given a sample of numerically ordered observations x1,x2, ...,xn, where n

is the number of observations. The mean is defined by the Equation 2.1:

x=

∑n
i=1xi
n

(2.1)

If n is odd, this median is defined by Equation 2.2:

M= x(n+1)/2 (2.2)

Otherwise, it is defined by Equation 2.3:

M=
xn/2+xn/2+1

2
(2.3)

The interquartile mean is defined by Equation 2.4:

xIQM =
2

n

3n
4∑

i=n
4+1

xi (2.4)

2.1.1.2 Spread

In summary statistics, the main measures of spread are the standard deviation, vari-

ance, range, interquartile range, absolute deviation and mean absolute difference [68].

The standard deviation is a measure that is used to quantify the amount of variation or

dispersion of a set of data values [17]. A low standard deviation indicates that the data

points tend to be close to the mean of the set, while a high standard deviation indicates

that the data points are spread out over a wider range of values. The variance is the expec-

tation of the squared deviation of a random variable from its mean. It measures how far a

set of numbers are spread out from their average value [68]. The range of a set of data is

9

the difference between the largest and smallest values [145]. The interquartile range is the

difference between 75th and 25th percentiles, or between upper and lower quartiles [137].

The absolute deviation of an element of a data set is the absolute difference between that

element and a given point. Typically the deviation is reckoned from the central value,

being construed as some type of average, most often the median or sometimes the mean

of the data set [17]. The mean absolute difference is to the average absolute difference of

two independent values drawn from a probability distribution [68].

Formally, given a sample of observations x1,x2, ...,xn, where n is the number of

samples and x is the mean, as defined by Equation 2.1. The standard deviation is defined

by Equation 2.5:

s=

√∑n
i=1(xi−x)

2

n−1
(2.5)

The variance is defined by Equation 2.6:

s2 =

∑n
i=1(xi−x)

2

n−1
(2.6)

The mean absolute deviation is defined by Equation 2.7:

MAD=
1

n

n∑
i=1

|xi−x| (2.7)

The mean absolute difference is defined by Equation 2.8:

MD=
1

n2

n∑
i=1

n∑
j=1

|xi−xj| (2.8)

2.1.1.3 Shape

In summary statistics, the main measures of the shape of a distribution are skewness

and kurtosis. Skewness is a measure of the asymmetry of the probability distribution

of a real-valued random variable with respected to its mean value. The skewness value

can be positive or negative [20]. When skewness is positive, the shape of the probability

distribution is right-skewed with respect to its mean, and if skewness is negative, it is left-

skewed. Meanwhile, the kurtosis measure shows how different from a normal probability

10

distribution the random variable distribution is. When it is positive, the distribution has a

sharper peak around the mean and a heavier tail. When it is negative, it has a flatter top

and decays more abruptly. The kurtosis measure also provides some information about

the tail of the distribution. If it is very large and positive, it indicates that the distribution

has a long tail [20].

Formally, given a sample of observations x1,x2, ...,xn, where n is the number of

samples and µ = x is the mean, as defined by Equation 2.1. The skewness is defined by

Equation 2.9 [41]:

sk=
µ3

µ
3/2
2

(2.9)

The kurtosis is defined by Equation 2.10 [41]:

ku=
µ4

µ22
(2.10)

2.1.1.4 Dependence

The mutual information of two random variables is a measure of the mutual depen-

dence between the two variables. More specifically, it quantifies the “amount of infor-

mation” (in units such as shannons, commonly called bits) obtained about one random

variable through observing the other random variable. The concept of mutual information

is intricately linked to that of entropy of a random variable, a fundamental notion in in-

formation theory that quantifies the expected “amount of information” held in a random

variable [33].

Formally, the mutual information of two discrete random variables X and Y can be

defined by Equation 2.11:

MI(X;Y) =
∑
y∈Y

∑
x∈X

p(x,y) log
(
p(x,y)

p(x)p(y)

)
(2.11)

where p(x,y) is the joint probability function of X and Y, and p(x) and p(y) are the

marginal probability functions of X and Y, respectively.

In the case of continuous random variables, the mutual information is defined by Equa-

11

tion 2.12:

MI(X;Y) =

∫
y∈Y

∫
x∈X

p(x,y) log
(
p(x,y)

p(x)p(y)

)
dxdy (2.12)

2.1.2 Time and Frequency Domain

Time domain is the analysis of mathematical functions, physical signals or time series

of economic or environmental data, with respect to time. In the time domain, the signal

or function’s value is known for all real numbers, for the case of continuous time, or at

various separate instants in the case of discrete time [82].

In electronics, control systems engineering, and statistics, the frequency domain refers

to the analysis of mathematical functions or signals with respect to frequency, rather than

time. In summary, a time-domain graph shows how a signal changes over time, whereas a

frequency-domain graph shows how much of the signal lies within each given frequency

band over a range of frequencies. A frequency-domain representation can also include

information on the phase shift that must be applied to each sinusoid in order to be able to

recombine the frequency components to recover the original time signal [23].

A given function or signal can be converted between the time and frequency domains

with a pair of mathematical operators called transforms. An example is the Fourier trans-

form, which converts a time function into a sum or integral of sine waves of different

frequencies, each of which represents a frequency component. The "spectrum" of fre-

quency components is the frequency-domain representation of the signal. The inverse

Fourier transform converts the frequency-domain function back to the time function [23].

In using the Laplace, Z-, or Fourier transforms, a signal is described by a complex

function of frequency: the component of the signal at any given frequency is given by

a complex number. The magnitude of the number is the amplitude of that component,

and the angle is the relative phase of the wave. For example, using the Fourier transform,

a sound wave, such as human speech, can be broken down into its component tones of

different frequencies, each represented by a sine wave of a different amplitude and phase.

The response of a system, as a function of frequency, can also be described by a com-

plex function. In many applications, phase information is not important. By discarding

the phase information it is possible to simplify the information in a frequency-domain

representation to generate a frequency spectrum or spectral density [23].

12

2.1.3 Principal Component Analysis

Principal Component Analysis (PCA) is a multivariate technique used to decompose

and transform a multivariate dataset into a set of successive orthogonal components or-

dered by the amount of variance of each component [143]. In other words, PCA is a linear

transformation of a feature set often used a dimensionality reduction algorithm. It trans-

forms features of the data into orthogonal vectors called principal components. The idea

is to represent high-dimensional data on a low-dimensional subspace while maintaining

most of the variation in the data. The principal components are the orthogonal vectors

that span this subspace [90].

2.1.4 Recursive Feature Elimination

Recursive Feature Elimination (RFE) [90] is an algorithm used to determine the top

untransformed features of a dataset. It is a form of backward elimination, alliteratively

removing features until an optimal number is found. First, the algorithm partitions the data

into training and testing sets via resampling. The algorithm creates a classification model

using the full set of n predictors on the training set and uses this model to predict the test

set. Each predictor is ranked according to its contribution to improving the accuracy of the

model. Next, it creates a subset composed of the top j features for all integer values of j

such that j≤n. Each subset is used to create another classification model employing only

the top j features, and this model is adopted to predict the test set. This entire process is

repeated until the desired number of folds for cross-validation is reached. After testing all

values of j, the algorithm identifies the value with the highest average prediction accuracy.

Label this value k (the optimal number of features) and return the top k features [90].

2.2 Machine Learning Techniques for building Classification Models

In order to automatically derive travel mode classification models from smartphone

sensor observations, machine learning techniques are used in conjunction with the feature

engineering techniques described previously. In this section we present a summary of the

main machine learning techniques techniques used in this work.

2.2.0.1 Logistic Regression

The logistic model is a widely used statistical model that uses a logistic function to

model a binary dependent variable. Logistic regression technique through which one esti-

13

mates the parameters of a logistic model. A logistic model has a dependent variable with

two possible values, such as stationary/non-stationary or in-vehicle/on-foot. These are

represented by an indicator variable, where the two values are labelled “0” and “1”. In the

logistic model, the the logarithm of the odds (log-odds) for the value labelled “1” is a lin-

ear combination of one or more independent variables, called predictors. The independent

variables can each be a binary variable or a continuous variable. The corresponding prob-

ability of the value labelled “1” can vary between 0 and 1 (certainly the value “1”). The

function that converts log-odds to probability is the logistic function. The unit of measure-

ment for the log-odds scale is called a logit, from logistic unit. The defining characteristic

of the logistic model is that increasing one of the independent variables multiplicatively

scales the odds of the given outcome at a constant rate, with each dependent variable hav-

ing its own parameter [69]. Figure 2.1 presents illustrates how the logistic function can

used to differentiate modes of transportation.

0

0.5

1

−6 −4 −2 0 2 4 6

Non-Stationary

Stationary

Figure 2.1: Visual representation of a Logistic Regression model for travel mode classifi-
cation. Adapted from https://commons.wikimedia.org.

2.2.0.2 K-Nearest Neighbours

The k-nearest neighbours algorithm (KNN) is a non-parametric method used for clas-

sification and regression. In classification, the input consists of the K closest training

examples in the feature space and the output is a class membership. An object is classi-

fied by a majority vote of its neighbours, with the object being assigned to the class most

common among its K nearest neighbours. If K = 1, then the object is simply assigned

to the class of that single nearest neighbour. KNN is a type of instance-based learning,

or lazy learning, where the function is only approximated locally and all computation is

deferred until classification. The KNN algorithm is among the simplest of all machine

learning algorithms. The neighbours are taken from a set of objects for which the class

14

https://commons.wikimedia.org

is known. This can be thought of as the training set for the algorithm, though no explicit

training step is required. A peculiarity of the KNN algorithm is that it is sensitive to the

local structure of the data [5]. Figure 2.2 illustrates the classification of samples using a

KNN model.

?

Car

Bus

Figure 2.2: Visual representation of a KNN model for travel mode classification. Adapted
from https://commons.wikimedia.org.

2.2.0.3 Naive Bayes

Naive Bayes (NB) classifiers are a family of simple "probabilistic classifiers" based

on applying Bayes’ theorem with strong (naive) independence assumptions between the

features. NB has been studied extensively since the 1950s. It was introduced under a

different name into the text retrieval community in the early 1960s and remains a popular

(baseline) method for text categorization. NB classifiers are highly scalable, requiring a

number of parameters linear in the number of variables in a learning problem. Maximum-

likelihood training can be done by evaluating a closed-form expression which takes linear

time, rather than by expensive iterative approximation as used for many other types of

classifiers. In the statistics and computer science literature, NB models are known under

a variety of names, including simple Bayes and independence Bayes. All these names ref-

erence the use of Bayes’ theorem in the classifier’s decision rule, but NB is not necessarily

a Bayesian method [112].

2.2.0.4 Decision Trees

Decision Trees are one of the oldest and simplest machine learning techniques. They

can be used for both regression and classification problems and their greatest advantage

compared to more modern techniques is their greater interpretability, since their visual

representation can be used to support domain expert’s decision making [69]. Figure 2.3

presents a visual representation of this model.

15

https://commons.wikimedia.org

Speed > 80 km/h

Acceleration > 2 km/h²

Noise > 25 dB

Motorcycle

Car

Bus

On Foot

Yes

No

Yes

Yes

No

No

Figure 2.3: Visual representation of a Decision Tree model for travel mode classification.
Adapted from https://www.lucidchart.com.

The training of a decision tree consists of partitioning the samples from a database into

regions. These partitions are usually done through an algorithm called recursive binary

splitting. Binary because at each iteration the algorithm divides a region in two and re-

cursive because each subregion is partitioned recursively until a stop condition is reached,

such as predetermined maximum number of leaves of the tree or maximum height [69].

This partitioning of the data is done through the values of predictor attributes. The choice

of the predictor attributes used in the partitioning is done through the Gini index, entropy

or information gain metrics [69]. Once the tree is trained the inferences are made through

the average value of the samples (Regression) or the most frequent class (Classification)

of each leaf.

2.2.0.5 Adaptive Boosting

Adaptive Boosting or Ada Boost (AB) is a machine learning meta-algorithm formu-

lated by Yoav Freund and Robert Schapire, who won the 2003 Gödel Prize for their work.

It can be used in conjunction with many other types of learning algorithms to improve

performance. The output of the other learning algorithms, namely weak learners, is com-

bined into a weighted sum that represents the final output of the boosted classifier. AB is

adaptive in the sense that subsequent weak learners are tweaked in favor of those instances

misclassified by previous classifiers. AdaBoost is sensitive to noisy data and outliers. In

some problems it can be less susceptible to the overfitting problem than other learning

algorithms. The individual learners can be weak, but as long as the performance of each

one is slightly better than random guessing, the final model can be proven to converge to

a strong learner. Every learning algorithm tends to suit some problem types better than

others, and typically has many different parameters and configurations to adjust before it

achieves optimal performance on a database In that sense, AB with decision trees as the

weak learners is often referred to as the best out-of-the-box classifier. When used with

decision tree learning, information gathered at each stage of the AB algorithm about the

16

https://www.lucidchart.com

relative "hardness" of each training sample is fed into the tree growing algorithm such

that later trees tend to focus on harder-to-classify examples [50].

2.2.0.6 Random Forest

The Random Forest technique is an evolution of decision trees and usually presents

higher accuracy due to the use of the Bagging technique in which multiple trees are con-

structed from different partitions of the database. During the construction of the trees,

only a subset of the predictive attributes are considered, which forces a greater variation

in the generated trees and reduces the variance of the inferences [69].

The main drawbacks of this technique compared to traditional decision trees are the

total loss of interpretability of results and high computational cost for model training.

However, in several scenarios this technique has been applied with great success [69].

2.2.0.7 Support Vector Machine

Support Vector Machine is a machine learning technique that attempts to generate

a mathematical model capable of dividing the dataset samples into two classes. This

mathematical model takes the form of a hyperplane since the number of dimensions of

this hyperplane will be equivalent to the number of predictor attributes used. Variations of

this technique can be used to for multi-class classification and regression problems [69].

Figure 2.4 presents a visual representation of this model.

Wheeled Samples

Unwheeled Samples

Acceleration

S
p
e
e
d Support Vectors

Figure 2.4: Visual representation of a Support Vector Machine model for binary travel
mode classification using only Speed and Acceleration as input features. Adapted from
https://commons.wikimedia.org.

In addition, more sophisticated forms of the Support Vector Machine use kernel func-

tions to separate non-linearly separable samples. For this, the number of sample sizes is

increased by combining values of the original attributes [69].

17

https://commons.wikimedia.org

The construction of the hyperplane is based on the points closest to the boundary

between the classes, which are called support vectors. Once these points are found, the

maximum margin can be established between the samples of each class [69].

The original application of this technique is in problems of binary classification, how-

ever, evolutions of the same can be used in multi-class classification problems and even

in regression problems [69].

2.2.0.8 Neural Networks

Neural Networks are one of the most popular and most powerful machine learning

techniques. They are inspired on the functioning of the human brain and are considered

an universal approximator because of their ability to map nonlinear functions using lay-

ers of neurons that compute the weighted sum of their inputs applied to an activation

function and whose weights are optimized based on a cost metric, such as error rate or

accuracy [37]. Figure 2.5 presents a visual representation of this model.

Speed

Acceleration

Sound

Wheeled

Public

N1

N2

N3

N4

Figure 2.5: Visual representation of a Multilayer Neural Network model for travel mode
classification with one hidden layer. Adapted from https://commons.wikimedia.org.

Feedforward Neural Networks (FNNs) are based on a logical structure called Percep-

tron or neuron. The Perceptron consists of a function that performs the weighted sum of

input variables. To the result of this sum, a bias value is added and an output function is

applied which transforms the result of this sum into a value between 0 and 1 or -1 and

1 [37].

A Multilayer Neural Network (Multilayer Perceptron) may have two or more layers,

where the first layer is called a Single-Layer Neural Network and the last layer is called

18

https://commons.wikimedia.org

the output layer. The intermediate layers are called hidden layers and have a key role in

generating more complex models [37].

The most common training algorithm of a neural network is the Back-Propagation

where the training is performed in iterations in which the error of the inferences of each

neuron is evaluated and the weights of its input are adjusted in order to reduce the error

in the next iteration [37].

The main disadvantages of neural networks is their long training time, especially in

networks with many hidden layers, and their high propensity to overfitting which is what

happens when a model fits so much to training data that its inferences only make sense

for training samples [37].

To avoid this and other neural network problems, model validation techniques such as

a test dataset or cross validation are required. The adjustment of the model is done through

its hyperparameters, such as number of hidden layers, number of iterations, learning rate,

momentum among others [37].

2.2.0.9 Deep Neural Networks

A deep neural network (DNN) is an artificial neural network (ANN) with multiple

layers between the input and output layers [14]. The DNN finds the correct mathematical

manipulation to turn the input into the output, whether it be a linear relationship or a

non-linear relationship. The network moves through the layers calculating the probability

of each output. DNNs can model complex non-linear relationships. DNN architectures

generate compositional models where the object is expressed as a layered composition

of primitives [132]. The extra layers enable composition of features from lower layers,

potentially modelling complex data with fewer units than a similarly performing shallow

network [14].

Deep architectures include many variants of a few basic approaches. Each architecture

has found success in specific domains. It is not always possible to compare the perfor-

mance of multiple architectures, unless they have been evaluated on the same data sets.

DNNs are typically feedforward networks in which data flows from the input layer to the

output layer without looping back. At first, the DNN creates a map of virtual neurons

and assigns random numerical values, or "weights", to connections between them. The

weights and inputs are multiplied and return an output between 0 and 1. If the network

didn’t accurately recognize a particular pattern, an algorithm would adjust the weights.

That way the algorithm can make certain parameters more influential, until it determines

the correct mathematical manipulation to fully process the data [60]. Figure 2.6 presents a

19

visual representation of a deep feedforward neural networks for travel mode classification.

Speed

Acceleration

Sound

Wheeled

Unwheeled

N1

N2

N3

N4

N1

N2

N3

N4

N1

N2

N3

N4

Figure 2.6: Visual representation of a Deep Feedforward Neural Network model for
travel mode classification with three hidden layers. Adapted from https://commons.
wikimedia.org.

2.2.0.10 Recurrent Neural Networks

A recurrent neural network (RNN) is a class of artificial neural network where con-

nections between nodes form a directed graph along a sequence. This allows it to exhibit

temporal dynamic behaviour for a time sequence. Unlike feedforward neural networks,

RNN can use their internal state (i.e., memory) to process sequences of inputs. This makes

them applicable to tasks such as unsegmented, connected handwriting recognition [16] or

speech recognition [114].

A finite impulse recurrent network is a directed acyclic graph that can be unrolled and

replaced with a strictly feedforward neural network, while an infinite impulse recurrent

network is a directed cyclic graph that can not be unrolled. Both finite impulse and infinite

impulse recurrent networks can have additional stored state, and the storage can be under

direct control by the neural network. The storage can also be replaced by another network

or graph, if that incorporates time delays or has feedback loops. Such controlled states

are referred to as gated state or gated memory, and are part of long short-term memory

networks and gated recurrent units [60]. Figure 2.7 presents a visual representation of this

model.

20

https://commons.wikimedia.org
https://commons.wikimedia.org

x

h

o

U

V

W
Unfold

xt-1

ht-1

ot-1

U

W

xt

ht

ot

U

W

xt+1

ht+1

ot+1

U

W

VV V V.

Driving Driving Walking Still

Figure 2.7: Visual representation of a Recurrent Neural Network model for travel mode
classification. Adapted from https://commons.wikimedia.org.

2.2.1 Long-Short Term Memory

Long short-term memory (LSTM) is a deep learning system that avoids the vanishing/-

exploding gradient problem through the use of recurrent gates called “forget” gates [55].

LSTM can learn tasks that require memories of events that happened thousands or even

millions of discrete time steps earlier. LSTM works even given long delays between sig-

nificant events and can handle signals that mix low and high frequency components .̧

Many applications use stacks of LSTM RNNs [46] and train them by Connectionist Tem-

poral Classification (CTC) [62] to find an RNN weight matrix that maximizes the prob-

ability of the label sequences in a training set, given the corresponding input sequences.

LSTM can learn to recognize context-sensitive languages unlike previous models based

on hidden Markov models [130] and similar concepts. Figure 2.8 presents a visual repre-

sentation of this model.

xt-1

ct-1,ht-1

ot-1

xt

ot

ct+1,ht+1

xt+1

ot+1

LSTM unit

σ σ tanh σ

tanh

ct-1

ht-1

xt

ht

ct

Ft It
Ot

ht

Bus Bus Bus

Figure 2.8: Visual representation of a LSTM based RNN for travel mode classification.
Adapted from https://commons.wikimedia.org.

21

https://commons.wikimedia.org
https://commons.wikimedia.org

2.2.2 Gated Recurrent Unit

Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks

introduced in 2014. They are used in the full form and several simplified variants. Their

performance on polyphonic music modelling and speech signal modelling was found to

be similar to that of long short-term memory. They have fewer parameters than LSTM,

as they lack an output gate [60]. Figure 2.9 presents a visual representation of this model.

xt-1

ht-1

ot-1

xt

ot

ht+1

xt+1

ot+1

GRU unit

σ
tanh

ht-1

xt

ht

Rt

ht

σ

1-
Zt

Train Walking Subway

...

Figure 2.9: Visual representation of a GRU based RNN for travel mode classification.
Adapted from https://commons.wikimedia.org.

2.3 Automated Machine Learning Techniques for building Classification Models

One of the main challenges in the use of ML algorithms is the configuration of their

hyperparameters. The choice of these parameters can directly interfere in the accuracy

of the generated model and in the training cost. Traditionally, these choices have been

made based on statistical intuition, previous work or default values, as we could notice

on most related works mentioned in Table 5.1. However, these choices rarely lead to

the best possible performance of these algorithms [48]. This has motivated the develop-

ment of a new research area, named Automated Machine Learning (AutoML), that tries

to develop frameworks that can autonomously identify the optimal configuration of ML

algorithms and general feature engineering techniques, such as PCA, that might enhance

its performance.

2.3.1 Hyperparameter Optimization

In the last years, several techniques for optimizing hyperparameter choice in an auto-

mated way have been proposed, the main ones being Grid Search, Random Search and

22

https://commons.wikimedia.org

Bayesian Optimization.

2.3.1.1 Grid Search

Grid Search technique consists of trying all possible configurations of an algorithm, or

a representative subset of them, and choosing the one that presents the best performance

according to a predefined metric, such as accuracy, precision, recall or F-score [134]. The

main advantage of this technique is that it always finds the best possible configuration

and, although it is computationally costly, it is easily parallelized in distributed environ-

ments [134]. The main shortcoming of this technique is that it is not adaptive. In other

words, the choice of next attempts is not optimized based on previous attempts.

2.3.1.2 Random Search

The Random Search technique uses a uniform probability distribution to choose the

configurations that will be tested, allowing a greater variation of hyperparameter values

used in a smaller time space [134]. It is more efficient than Grid Search technique in

very large search spaces and is also easily parallelized [134]. As Grid Search, the main

shortcoming is that it is not adaptive.

2.3.1.3 Bayesian Optimization

Grid and Random Search limitations are the main advantage of Bayesian Optimiza-

tion [124] and other sequential model-based optimization techniques [67]. Bayesian Op-

timization analyzes the performance metrics of past configurations to choose new con-

figurations that present the highest expectation of improvement [134]. In this way, this

technique is able to find better configurations in a much shorter time interval [124].

2.3.2 Combined Algorithm Selection and Hyperparameter Optimization

To a great extent, choosing a machine learning algorithm can be as challenging as

selecting its hyperparameter values. Each algorithm has its own characteristics and might

present better performance depending on the nature of the pattern that is being learned.

Therefore, in [134] authors of the Auto-WEKA1 framework formalized the combined

algorithm selection and hyperparameter optimization problem (in short: CASH).

Given a set of algorithms A= {A(1), ...,A(k)} with associated parameter spacesΛ(1), ...,Λ(k)

and limited amount of training data D = {(x1,y1), ...,(xn,yn)}, they define CASH as in

1https://www.cs.ubc.ca/labs/beta/Projects/autoweka/

23

Equation 2.13:

A∗λ∗ ∈ argmin
A(j)∈A,λ∈Λ(j)

1

k

k∑
i=1

L(Aλ(j) ,D
(i)
train,D

(i)
valid). (2.13)

L(Aλ(j),D
(i)
train,D

(i)
valid) is the loss (i.e., misclassification rate) achieved by A when

trained on D
(i)
train and evaluated on D

(i)
valid. Constant k is the number of folds used in

the k-fold cross-validation process [74], which splits the training data into k equal sized

partitions D(1)
valid, ...,D

(k)
valid and sets D(i)

train =D/D
(1)
valid for i= 1, ...,k.

Utilizing Bayesian Optimization, Auto-WEKA is able to solve this problem in an

interactive way. In its n-th iteration, it fits a probabilistic model based on the first n−−1

loss function evaluations and uses this model to select the next combination of algorithm

and hyperparameters to evaluate. It makes a trade-off between exploration of new parts

of the search space with exploitation of regions known to be good [76].

2.3.3 Global Optimization

Given the generality of the Bayesian Optimization technique and the CASH problem,

in [134] authors were able to include feature preprocessing algorithms, such as Best First,

Greedy Stepwise and Ranker, in the search space as well. Provided that, the Auto-WEKA

framework is able to select the best combination of machine learning classifier, hyper-

parameter values and feature preprocessing technique between the ones available in the

WEKA Suite2. This approach has been categorized as a solution to the Global Optimiza-

tion3 of a ML-based system.

Therefore, in [48] authors extended this solution and implemented an open-source

framework based on the well known scikit-learn4 python library, named AutoSklearn5. In

this work, they extend the technique proposed in [134] to include the selection, configu-

ration and combination of data preprocessing techniques. They also proposed two major

improvements on the AutoML process: a meta-learning component for increased effi-

ciency and an post-processing component for increased robustness. Figure 2.10 provides

an overview of their framework.

The meta-learning component compares several meta-features [48] of the current

2https://www.cs.waikato.ac.nz/ml/weka/
3http://aclib.net/acbib/
4http://scikit-learn.org/
5https://automl.github.io/auto-sklearn

24

dataset with a collection of more than 140 benchmark datasets that were previously an-

alyzed. It identifies the datasets that have a similar set of meta-features and selects their

best performing configurations to be utilized in the initial interactions of Bayesian Opti-

mization for the current dataset.

Train Dataset Hyperparameters

Ensemble Model

AutoML Framework
Meta-Learning

Ensemble Selection

Global Optimization
Data Preprocessor

Feature Preprocessor

Classifier

Bayesian OptimizerFeature Preprocessor

Classifier

Figure 2.10: Automated Machine Learning workflow implemented in AutoSklearn. Dia-
gram adapted from [48].

The post-processing component utilizes an ensemble selection technique to build an

ensemble containing up to 50 best performing models evaluated during the Bayesian Op-

timization [27]. It starts from an empty ensemble and then iteratively adds the model that

maximizes ensemble validation performance [48].

2.4 Performance Metrics for evaluating Classification Models

When evaluating classification models, the most common performance metrics ana-

lyzed are accuracy, precision, recall, f1-score and kappa coefficient.

2.4.1 Accuracy

The accuracy metric is obtained dividing the number of chunks correctly classified

as belonging (True positives) or not-belonging (True negatives) by the total of inferences

made (Total population) [44]. Thus, Accuracy is defined by Equation 2.14:

Accuracy=
True positives+True negatives

Total population
(2.14)

25

2.4.2 Precision

The precision metric is obtained dividing the number of chunks correctly classified as

belonging (True positives) by the total of inferences made for that class (True positives +

False positives) [44]. Thus, Precision is defined by Equation 2.15:

Precision=
True positives

True positives+False positives
(2.15)

2.4.3 Recall

The recall metric is obtained dividing of the number of chunks correctly classified

as belonging (True positives) by the number of collected chunks belonging to that class

(True positives + False negatives) [44]. Recall is defined by Equation 2.16:

Recall=
True positives

True positives+False negatives
(2.16)

2.4.4 F1-Score

Finally, F1-score (F1), also known as F-score or F-measure, is the harmonic average

of each travel mode class precision and recall values [44]. It is defined by Equation 2.17:

F1 = 2×
Precision×Recall
Precision+Recall

(2.17)

2.4.5 Kappa Coefficient

Cohen’s kappa, also know as Kappa Coefficient is a statistic that measures inter-

annotator agreement [31]. It consists of a score that expresses the level of agreement

between two annotators on a classification problem. It is defined by Equation 2.18:

k= (po−pe)/(1−pe) (2.18)

where po is the empirical probability of agreement on the label assigned to any sample

(i.e., the observed agreement ratio), and pe is the expected agreement when both annota-

tors assign labels randomly. pe is estimated using a per-annotator empirical prior over the

class labels [7].

26

3. Real-Time Travel Mode Detection with Location Sensors

3.1 Introduction

The identification of which travel modes are used by citizens in their daily commute,

can be useful for many of context-aware applications, specially if this identification is

obtained in real-time. Therefore, previous works have proposed solutions for this problem

[13,107,131,147,149] using supervised machine learning algorithms for extracting travel

mode patterns from sensors readings.

However, few studies presented solutions that can execute the detection of user travel

modes in real-time, and fewer have presented the evaluation of these solutions in a realistic

manner. Also, some of the previous studies state that off-the-shelf activity recognition

solutions, do not perform well in the travel mode detection task, although many of them

do not present a quantitative evidence of their poor performance.

Thus, the present chapter is trying to answer three research questions:

1. Can off-the-shelf activity recognition solutions perform travel mode detection sat-

isfactorily?

2. Is detecting a person mode of transportation through their smartphone sensors, in

real-time, truly possible?

3. Does the proposed technique allow real-time travel mode detection in urban cen-

ters?

The technique proposed in this chapter uses supervised machine learning algorithms

to identify the travel mode of smartphone users based on location traces obtained through

embedded sensors, in real-time. A prototype of the solution, that is capable of executing

27

this detection using only smartphone hardware (i.e., in-device processing), was imple-

mented, and its performance was evaluated through realistic field tests in an urban envi-

ronment. Additionally, an evaluation of an off-the-shelf activity recognition solution is

presented, namely ActivityRecognition API1, available on Android platform, in the travel

mode detection task, in order to justify the development of new techniques. The main

contributions of this chapter are:

• Proposal of a real-time travel mode detection technique.

• Development of a prototype of the proposed technique as a mobile application,

namely CityTracks-RT, using Android platform and Weka API2.

• Evaluation of the proposed solution through realistic field tests with 37 users in the

metropolitan region of Rio de Janeiro from Fall/2016 to Spring/2017.

• Development of a prototype application that allows multi-sensor data collection

and real-time travel mode detection, namely CityTrack-AWARE, using AWARE

framework [47] and ActivityRecognition API.

• Evaluation of ActivityRecognition API performance in the travel mode detection

task, through field tests with 6 users in the metropolitan area of Rio de Janeiro

during Fall/2017.

Parts of these contributions were published in [125,126]. The remainder of this chap-

ter is structured as follows. Section 3.2 details related work and their main limitations.

Section 3.3 presents the proposed solution. Section 3.4 presents CityTracks-RT, the solu-

tion prototype and data collection tool. Section 3.5 presents the evaluation of the proposed

solution prototype. Section 3.6 presents the ActivityRecognition API evaluation using the

CityTracks-AWARE data collection tool. Section 3.7 presents the main conclusions.

3.2 Related Works

In this section, the state-of-the-art solutions for travel mode detection, both offline and

online (i.e, real-time), are described.

In [149], supervised learning through artificial neural networks was applied to iden-

tify the travel modes used in each segment of a trip. The reported accuracy for bus trips

1https://developers.google.com/location-context/activity-recognition/
2https://weka.wikispaces.com/

28

detection was greater than in any other study, although this work did not consider a de-

ficiency of the traditional neural network algorithms, called local optimum, and the fact

that comparing to results from previous studies might be misleading since they were car-

ried out using different datasets, which can present very contrastive quality of data [146].

Neural networks have also achieved superior performance than other machine learning

techniques for the offline detection task in [147].

In [121], accelerometer and gyroscope data are used to develop an offline travel mode

detection algorithm using Random Forest (RF) [21] for classification. They achieve very

high accuracy on six modes classification, but do not propose an online detection tech-

nique.

In [43], authors proposed several features based on accelerometer, magnetometer and

gyroscope sensors for offline travel mode detection and compare classification perfor-

mance using Decision Tables (DT) [73], k-Nearest Neighbours (kNN) [4] and Support

Vector Machine (SVM) [2]. The best results were achieved using SVM for classification.

In [8], authors also used accelerometer and gyroscope data as well as GPS informa-

tion to develop an offline travel mode detection algorithm using Multinomial Logistic

Regression (MNL) [18], Nested Logit (NL) [141] and Multiple Discriminant Analysis

(MDA) [37] for classification. The best performing classifier was the one built using NL

with eight variables.

In [107] the CityTracks application was proposed for collecting smartphone users mo-

bility data through mobile crowdsensing. The collected data contained the travel modes

used and the user location at roughly each second, which was used to perform Knowledge

Data Discovery [45] and propose an offline detection technique that performed location

data preprocessing and segmentation, feature extraction and summarization, as well as

travel mode classification with supervised machine learning algorithms.

In a similar way, [13] collected labelled samples of GPS, accelerometer and gyroscope

sensors data to create a real-time travel mode detection technique based on classifier cas-

cading [3]. They used the magnitude metric [12, 24, 135] to extract orientation indepen-

dent features from accelerometer and gyroscope readings. One of the limitations of this

work is the fact that proposed technique was evaluated in an offline manner, although it

performed online classification. Therefore, the simulated real-time detection results can

present optimistic metrics which would be hardly achieved in a real use case.

In [131], data from accelerometer, gravity sensor, gyroscope, magnetometer and barom-

eter is collected to develop an energy efficient technique for online detection. By not us-

29

ing the GPS as a data source the authors were able to achieve a great reduction in energy

consumption and a good classification performance during the simulation of online detec-

tion. Although this work achieved great results using a large variety of sensors, some of

the sensors used are not present in most smartphones models. This could restrict the use

of this technique for a small percentage of the citizens, what could limit the impact of the

ITS applications that rely on it.

In [28], the authors presented a technique that combines smartphone Hall-Effect mag-

netometer and accelerometer data to detect the users mode of transportation in real time,

by applying advanced signal processing techniques and extracting features from each

spectrum of the Fast-Fourier Transform (FFT) [109] of each second of movement, such

as entropy, energy, energy ratio and cepstral coefficients. Despite the promising results,

the authors did not implement or evaluate a prototype of the proposed technique on a real

smartphone platform.

In [90] the authors proposed an online travel mode detection technique that combined

smartphone GPS and accelerometer data. They applied the “movelets” technique [9] for

preprocessing, Principal Component Analysis [143] and Recursive Feature Elimination

(RFE) [88] for dimensionality reduction, k-Nearest Neighbours (kNN) and Random For-

est (RF) for classification, and 10-fold cross validation [74] for performance evaluation.

The best performing classifier was the one built with RF.

In [10] and [139], the authors augmented GPS data with socioeconomic information

from the users to improve offline travel mode detection. In [10] dynamic Bayesian Net-

works are built for classification and their performance is evaluated on five test datasets

and compared with SVM, RF and Multilayer Perceptron (MLP) [111]. In [139], RFs are

used to build the main classification model and their performance is compared with MLP

and SVM models using 60% of the study data for training and 40% for testing.

In [89] authors performed hypothesis testing of several feature extraction techniques

and comparison of different ML approaches including Autoencoders for travel mode de-

tection using GPS traces. Following the deep learning trend, in [34] the authors propose

its use for offline travel mode detection based on GPS trajectories, removing the need of

feature engineering techniques. They compare multiple Convolutional Neural Network

(CNN) [81] architectures and present performance metrics for each configuration using a

test dataset that contained 20% of the study data.

Travel mode detection via smartphones can use a wide variety of sensors, however,

most state-of-the-art solutions found use only GPS data [10, 34, 89, 139, 147, 149]. Some

30

solutions used accelerometer readings and cellular data to compensate for GPS signal

losses [90, 107] and others used data from the gyroscope, magnetometer, and other less

conventional sensors such as barometer and gravity sensor to reduce power consumption

[8, 13, 28, 43, 121, 131].

In the solution proposed in this chapter, a combination of GPS, WiFi and cellular

networks data was used, since these sensors are available in most of today’s smartphones

and allow location tracing with good precision in urban centers.

As illustrated in Table 3.1, none of the related work presented the evaluation of an

application for real-time travel mode detection in a real use scenario, what states the

originality of this work.

Table 3.1: Summary of related works on travel mode detection through smartphone sen-
sors. *Acc - Aceleromenter, Gyr - Gyroscope, Mag - Magnetometer, Cellular - Cellular
Networks

Ref. Classification
Algorithm

Detection
Type Sensors Used

[149] Neural Networks Offline GPS
[147] Bayesian Networks Offline GPS
[79] Random Forest Offline GPS
[121] Random Forest Offline Acc, Gyr
[43] Support Vector Machine Offline Acc, Mag, Gyr
[8] Nested Logit Offline GPS, Acc, Gyr

[131] Hierarchical Classifier Online
Acc, Gravity Sensor,
Gyr, Mag, Barometer

[13] Cascading of Classifiers Online GPS, Acc, Gyr
[107] Hierarchical Classifier Offline GPS, WiFi, Cellular
[28] Hierarchical Classifier Online Hall-Effect Mag, Acc
[90] Random Forest Online GPS, Acc
[10] Bayesian Networks Offline GPS
[139] Random Forest Offline GPS
[89] Random Forest Offline GPS

[34]
Convolutional

Neural Networks Offline GPS

3.3 Proposed Solution

The solution proposed in this chapter is able to continuously extract features from

chunks of location traces at every 90 seconds and infer which travel mode is being used,

without the need of expensive segmentation and noise removal techniques.

Instead, it uses lightweight preprocessing techniques, that can be applied while the

data is being collected. This approach is also referred to as edge mining, or edge com-

puting, and allows our technique to be executed within smartphone devices, without the

need of demanding computing resources from the cloud. Figure 3.1 illustrates the pro-

posed solution. It was based on the data mining technique presented in [107] for offline

31

detection.

Collect Locations Preprocess Locations Summarize Chunk

Hierarchical Classification
Classify with MLP

Classify with SVM

Classify with BN Classify with DT

Non-motorized Non-motorized or Motorized

MLP ClassificationSVM Classification BN Classification DT Classification

Figure 3.1: Proposed Real-Time Travel Mode Detection Solution. *MLP - Multilayer
Perceptron, SVM - Support Vector Machine, BN - Bayesian Net, DT - Decision Table

At maximum frequency of one sample per second, location traces containing alti-

tude, latitude, longitude, precision, and timestamps of the measurement are captured.

After each sample collection, a preprocessing routine calculates the distance, based on

the Haversine formula [123], instantaneous speed, and acceleration. Samples with speed

lower than 0.4 m/s are considered to be equivalent to stops and samples with location

precision worse than 200 meters are considered to be invalid, and therefore are discarded.

If the timestamp difference in seconds represented by tds between two subsequent

valid samples, s1valid and s2valid, is higher than one second, a set of synthetic samples

represented by Ssynt = {s1synt, s
2
synt, ..., s

n
synt} is inserted in between them by an interpo-

lation technique. This technique generates n synthetic samples with the same altitude,

latitude, longitude, precision, distance and speed of s1valid but with acceleration equals

zero, where n= tds−1.

After each one and a half minutes of movement data collection, the samples are

grouped into a chunk and a summarization routine extracts the maximum speed, maxi-

mum acceleration, and number of direction changes in these 90 seconds. These features

were selected base on the results presented in by a previous work, that indicated that they

could be useful for online detection [108].

When the chunk summarization is concluded, travel mode classification is performed

using two main approaches. In one of them, a hierarchical classification scheme is used,

which first classifies the chunk into motorized and non-motorized using a Support Vec-

32

tor Machine (SVM) pre-trained with Sequential Minimal Optimization (SMO), then uses

a Bayesian Network or a Decision Table classifier to identify non-motorized chunks as

walking or biking, as well as a Decision Table classifier for detecting bus, car or motor-

cycle chunks from the chunks classified as motorized by the SVM.

This approach was based on the results of our previous work [107] which showed

that this hierarchical classification leaded to better performance than other approaches

in the offline detection problem. Other related works [28, 90, 131] have showed that an

hierarchical approach could lead to good classification results in online detection also.

The second approach is to use a single Multilayer Perceptron (MLP) classifier, which

is responsible for classifying the chunks into walking, biking, bus, car or motorcycle.

Neural network based algorithms, such as the Multilayer Perceptron have also presented

good results in previous works of offline detection [107, 147, 149].

A preliminary version of the proposed solution was presented in [126].

3.4 Prototype Development

In this section, the architecture and implementation of the solution prototype and data

collection tool, named CityTracks-RT, are presented. It was used in the evaluation of the

real-time travel mode detection technique proposed in this chapter.

This prototype was implemented on the Android platform and used the FusedLoca-

tionAPI3 to collect the locations samples, the Weka API to run the supervised machine

learning algorithms and the Gson API4 to store collected chunks in JavaScript Object

Notation (JSON) format.

The proposed solution was implemented using the Object Oriented (OO) program-

ming paradigm [110] with a Model-View-Controller (MVC) design pattern [77].

Therefore, the locations and chunks were defined as Model classes, and the Factory

Method and Builder patterns [54] were used to instantiate them while applying the pre-

processing and summarization steps detailed in Section 3.3.

A generic JSON Data Access Object (DAO) class [101] has also been implemented.

It allowed the in-device persistence of the Model instances using the Gson API. This set

of classes can be viewed as the Model layer of the application.

3https://developers.google.com/
4https://github.com/google/gson

33

The View layer or User Interface (UI), allowed the user to select the current travel

mode and to view the timestamps, latitude and longitude of the last captured location. It

was implemented using an Android Activity (CityTracksRTActivity), that defined the UI

logic, and an XML file, that defined the UI layout.

The Control layer was implemented using an Android Service (CityTracksRTService).

Once this Service is triggered by the CityTracksRTActivity, it keeps running in back-

ground, even if the app is minimized by the user. This guarantees that the data collection

and travel mode detection are not interrupted, unless the user kills the background process

manually.

The CityTracksRTService is responsible for preprocessing the locations, that are col-

lected through the FusedLocationAPI, by using the location Factory Method, and sum-

marizing the chunk after each one and a half second, by using the chunk Builder. It then

identifies the chunk travel mode using the a wrapper class for the Weka API and stores

the chunk instances, containing the preprocessed locations, extracted attributes, user in-

formed and inferred labels, using the JSON DAO.

The wrapper class for the Weka API used default hyperparameter values for most

of the machine learning algorithms used, with the exception of Multilayer Perceptron

algorithm, whose learning rate was set to 0.1, momentum equals 0.2, training time of 2

seconds and three hidden layers between the input and output.

Figure 3.2 contains high-level representation of the interaction between the app com-

ponents and Figure 3.3 presents the workflow of the CityTracks-RT application indicating

which component is responsible for each task in the workflow. The prototype source code

and application package (APK) are available at https://bitbucket.org/eltonfss/citytracks-

rt/.

Figure 3.2: CityTracks-RT application components.

34

Figure 3.3: CityTracks-RT application workflow.

3.5 Prototype Evaluation

In this section, the performance evaluation of the real-time travel mode detection tech-

nique proposed in Section 3.3 is presented. This evaluation was conducted through field

tests, in the metropolitan region of Rio de Janeiro, where several volunteers were invited

to use our prototype application, CityTracksRT, in their daily commute and to inform their

travel modes manually as the ground truth label four our quantitative analysis.

3.5.1 Methods

In total, 37 volunteers have agreed to participate and install the CityTracksRT app.

Users received an illustrated manual that instructed them to start the data collection when-

ever they were commuting through one of the travel modes available in the app and se-

lecting the travel mode option before the movement started. Whenever they switched

modes, they should select another travel mode option, if it was available, or stop data col-

lection, otherwise. The data collected was shared via email on the first collection phase

and through a web service that was called directly from the CityTracks-RT mobile app on

a second phase.

Data collection took place mainly in the South Zone and Downtown of Rio de Janeiro

city, since most of the volunteers were students from the Federal University of the State

of Rio de Janeiro, which is located in the Urca neighbourhood, within the South Zone

and not far from Downtown. Some traces were also collected in satellite cities within Rio

de Janeiro (RJ) metropolitan area, such as Duque de Caxias, Nilópolis, Nova Iguaçu and

Niteroi, and in the route between these cities and Downtown. The spread of the location

traces obtained over these geographical regions can be observed in Figure 3.4.

All chunks collected by the users were serialized and stored in JSON format. There-

35

(a) (b) (c)

Figure 3.4: Spatial visualization of users’ displacement on the Rio de Janeiro metropolitan
area during the use of CityTracks-RT application.

fore, a script was developed using the Java programming language and Gson API, in order

to restore the chunks information, including all locations coordinates, chunk attributes, in-

ferences made by all classifiers and the ground truth label provided by the user. Thus, this

script was used to load all chunks objects in memory as a Java Collection5.

A second script, received these chunks as input and calculated the number of True

Positives, chunks correctly classified as belonging to a travel mode class, True Negatives,

chunks correctly classified as not-belonging to a travel mode class, False Positives, chunks

incorrectly classified as belonging to a travel mode class, and False Negatives, chunks

incorrectly classified as not-belonging to a travel mode class, for each classifier. These

were used to build the confusion matrices that are presented in Section 3.5.3.

Another script calculated the accuracy, precision, recall and F1-score metrics [44]

which were used to evaluate and compare supervised machine learning algorithms per-

formance in travel mode classification tasks in previous works [13, 107, 131, 147, 149].

The accuracy can be viewed as a naive metric that summarizes the overall performance

while precision and recall metrics allow us to analyze the overall ability of a classifier to

correctly classify samples of all classes and less frequent classes, respectively. Finally,

the F1-score is the harmonic average of the precision and recall, and is one of the most

reliable indicators of good classification performance [105].

3.5.2 Data

In this section the collected data is characterized, by analyzing overall statistical mea-

sures and measures by user. The summary statistics by user are presented in Table 3.2.

5https://docs.oracle.com/javase/7/docs/api/java/util/Collection.html

36

The location traces obtained had a mean accuracy of 22.1 meters and a total of 2,519

chunks and 226,466 locations were obtained, about 48.7% directly by the sensors via

FusedLocationAPI and 51.3% by the interpolation technique described in Section 3.3.

The total period of data collection collected sums up to 63 hours, with an average of

approximately 1.7 hours of data collected by each user.

The large disparity observed in the number of chunks collected by each volunteer can

be associated to the absence of an effective incentive mechanism in the data collection

approach. In the approach adopted, users did not receive any concrete or abstract reward

for the amount of data they collected.

With respect to the travel mode distribution, more than 80% of the locations were

collected by bus or walking, while less than 20% were collected by car and walking, what

can be seen in detail on the histogram of Figure 3.5.

Therefore, only users who were truly interested in contributing to this research col-

lected a meaningful amount of data, while others did not become as engaged as them.

This suggests that data the final dataset might be biased towards a part of the population,

that is more concerned with the outcomes of research activity in general.

The precision threshold of 200 meters was established based on [107] and all locations

collected were compliant with it. While analyzing the data collected, it is possible to

conclude that reducing this threshold below 200 meters would significantly reduce the

number of samples obtained, causing the locations traces to be too sparse and making

travel mode detection harder and less efficient.

As presented on Figure 3.5 most of the locations precision fell between 10 and 40 me-

ters, almost 70%, with a small amount o locations being collected with precision below 10

meters and above 40 meters. The importance of this analysis must be emphasized because

the precision of locations collected will directly influence the context-aware applications

that might depend on the travel mode detection.

3.5.3 Results

In this section the results obtained by each classifier are described, with respect to the

metrics defined in Equations 2.14, 2.15, 2.16 and 2.17.

In the hierarchical classification approach, SVM achieved mean per class accuracy of

approximately 62.2%, 60.3% precision and 60.2% recall. Therefore, the mean F1-score

was about 60.3%. The precision for motorized chunk classification was much higher than

37

(a) (b)

(c)

Figure 3.5: Locations captured x locations generated per travel mode (a). Locations cap-
tured x locations generated by precision range in meters (b). Cumulative frequency of
locations collected by precision range (c).

for non-motorized, while recall achieved similar values for both classes.

This indicates that a high percentage of chunks classified as non-motorized where

misclassified motorized chunks. In Table 3.3 the confusion matrix from which those

metrics were obtained is presented.

From the 2,519 samples, 1,051 were labelled as motorized and correctly classified by

the SVM algorithm. Decision Table classifier achieved mean per class accuracy of 68.0%,

59.2% precision and 58.0% recall. In the Table 3.4 the confusion matrix for this classifier

is presented.

Meanwhile, SVM algorithm was able to classify 506 chunks labelled as non-motorized

correctly. Therefore, these were classified as walking or biking by a Bayesian Net and a

Decision Table classifiers. Approximately 67.0% mean per class accuracy was achieved

with Bayesian Net and 66.2% with Decision Table. Precision, recall and F1-score were,

respectively, 45.0%, 36.2% and 40.1% for Bayesian Net and 45.0%, 35.8% and 39.8%

for Decision Table. In Table 3.5 the confusion matrices of both classifiers are presented.

In comparison to the hierarchical approach, the Multilayer Perceptron classification

38

Table 3.2: Data collection summary statistics per user. *#H - Hours of data collection, #C
- Number of chunks collected, #L - Number of locations collected, MP - Mean location
precision, SD - Precision standard deviation, %C - Percentage of locations captured via
FusedLocationAPI, %G - Percentage of locations generated by interpolation.

ID #H #C #L MP SD %G %C
1 8.4 337 30,330 12.4 m 13.9 m 34.6 65.4
2 6.3 253 22,770 34.1 m 24.5 m 76.4 23.6
3 5.5 222 19,980 13.1 m 7.1 m 38.1 61.9
4 5.5 219 19,710 32.3 m 25.0 m 59.9 40.1
5 4.4 176 15,840 14.3 m 23.5 m 87.6 12.4
6 3.1 123 11,070 20.4 m 23.5 m 36.4 63.6
7 2.7 110 9,900 39.0 m 42.5 m 35.7 64.3
8 2.4 95 8,550 5.0 m 6.6 m 31.0 69.0
9 2.2 87 7,830 25.7 m 40.0 m 33.2 66.8

10 2.1 83 7,470 42.7 m 38.7 m 83.8 16.2
11 1.7 69 6,210 15.4 m 22.7 m 37.7 62.3
12 1.7 68 6,120 9.4 m 6.0 m 36.0 64.0
13 1.5 61 5,490 21.9 m 15.7 m 72.0 28.0
14 1.3 52 4,680 26.5 m 15.9 m 77.5 22.5
15 1.3 51 4,590 47.6 m 43.1 m 81.6 18.4
16 1.2 50 4,500 3.5 m 1.6 m 31.4 68.6
17 1.1 44 3,960 14.6 m 22.7 m 38.8 61.2
18 1.0 40 3,345 40.1 m 31.1 m 64.6 35.4
19 1.0 39 3,510 19.7 m 15.3 m 41.7 58.3
20 0.9 36 3,240 9.6 m 16.4 m 36.7 63.3
21 0.9 35 3,150 47.4 m 49.7 m 68.6 31.4
22 0.8 34 3,060 34.4 m 43.7 m 38.0 62.0
23 0.7 30 2,700 20.1 m 35.6 m 41.4 58.6
24 0.7 27 2,430 28.2 m 29.7 m 83.5 16.5
25 0.7 27 2,430 13.6 m 8.6 m 42.0 58.0
26 0.6 23 2,070 11.8 m 25.3 m 37.4 62.6
27 0.5 22 1,991 7.4 m 7.7 m 2.2 97.8
28 0.5 20 1,800 14.4 m 28.8 m 40.1 59.9
29 0.4 16 1,440 48.3 m 47.4 m 67.2 32.8
30 0.3 14 1,260 9.2 m 10.8 m 34.6 65.4
31 0.3 13 1,1170 10.1 m 7.0 m 32.5 67.5
32 0.3 11 990 4.1 m 4.4 m 36.4 63.6
33 0.2 9 810 5.7 m 6.1 m 35.2 64.8
34 0.2 8 720 30.4 m 11.2 m 41.5 58.5
35 0.2 7 630 7.0 m 3.7 m 34.8 65.2
36 0.2 7 630 30.9 m 4.2 m 39.4 60.6
37 0.0 1 90 54.1 m 37.1 m 47.8 52.2
All 63 2519 6121 22.3 m 21.5 m 51.3 48.7

Table 3.3: Confusion matrix of the motorized and non-motorized chunk classification for
the SVM classifier.

Classified\Labelled Motorized Non-motorized
Motorized 1051 427

Non-motorized 517 506

Table 3.4: Confusion matrix of motorized mode classification for the Decision Table
classifier.

Classified\Labelled Bus Car
Bus 632 109
Car 167 83

39

Table 3.5: Confusion matrices of non-motorized chunk classification for Decision Table
and Bayesian Net classifiers.

Classifier Decision Table Bayesian Net
Classified\Labelled Walking Biking Walking Biking
Walking 335 38 339 38
Biking 133 0 129 0

achieved 45.6% mean per class accuracy, 37.8% precision, 31.8% recall and 31.0% F1-

score. Due to the absence of chunks collected by motorcycle, this mode was not consid-

ered in the calculation of these metrics. Table 3.6 presents the confusion matrix for this

classifier.

Table 3.6: Confusion matrix of walking, biking, bus and car classification with Multilayer
Perceptron.

Classified\Labelled Walking Biking Bus Car
Walking 463 35 231 168
Biking 96 1 189 37

Bus 269 7 594 107
Car 50 1 96 92

As the number of chunks collected for each mode of transportation was not equally

high for all travel mode classes, results obtained should be analyzed with caution, given

that class imbalance might have disproportionately increased or decreased the perfor-

mance metrics obtained. Table 3.7 summarizes the mean per class accuracy, precision,

recall and F1-score of each classifier.

Table 3.7: Summary of mean per class accuracy, precision, recall and F1-score of each
classifier.

Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%)
Multilayer Perceptron 45.6% 37.8% 31.8% 31.0%

Support Vector Machine 62.2% 60.3% 60.2% 60.3%
Decision Table 67.1% 52.0% 46.9% 49.3%
Bayesian Net 67.0% 45.0% 36.2% 40.1%

3.5.4 Discussion

Through the field tests conducted, it is possible to verify the performance of the pro-

posed travel mode detection technique in an urban scenario. A total of 2,519 sample

chunks were classified using a prototype application, in which the proposed technique

was implemented, that executed the detection in real-time, using only smartphone hard-

ware resources.

40

The large variation in the mean location precision of the chunks collected can be

explained by the heterogeneity of the smartphone models used by the 37 volunteers. The

mean location precision per user did not exceed 50 meters, what can be considered to

be good, but not great. Provided that the predefined precision threshold was set to four

times this value, it not possible to affirm that it had a negative impact on the detection

performance, but it indicates that better results can be achieved with smartphones whose

location precision is better than this.

With respect to the in-device execution of the machine learning algorithms, the classi-

fication delay was significantly small and CPU consumption was not too high. The contin-

uous location sampling, however, has proven to be inefficient, causing the CityTracks-RT

app to consume a large amount of RAM memory and battery power over time. This indi-

cates that a better implementation would have to utilize an adaptive sampling technique,

instead of the fix interval of one second, which was used on the prototype.

3.6 ActivityRecognition API Evaluation

In this section, an evaluation of the ActivityRecognitionAPI, through field tests con-

ducted by another group of volunteers that also travelled around the metropolitan region

of Rio de Janeiro, is presented. The results will be analyzed in two stages. In the first one,

the data collected by the users will be analyzed, identifying the main travel modes used,

number of trips and hours collected by each device and the amount of inferences made

for each travel mode. In the second step, the performance of the classification algorithms

will be analyzed using the same metrics used on the CityTracks-RT prototype evaluation.

3.6.1 Methods

The data collection tool developed was called CityTracks-AWARE and, in addition

to collecting the travel mode informed by the user and the inferences made by Activi-

tyRecognitionAPI, allowed the collection of data of 16 physical and virtual sensors as

well as the beginning, end and purpose of the displacements. Table 3.8 lists the sensors

collected and the minimum sampling frequencies applied to each of them, noting that it

is not possible to guarantee a maximum sampling rate on the Android platform for all

sensors.

The application was developed according to the object-oriented software design model

named Model-View-Controller [54], where the source code of the application is divided

41

Table 3.8: Sensors supported by the CityTracks-AWARE application and their minimum
sampling frequencies. * Sampling frequency does not apply because these sensors capture
the data reactively.

Sensor Min. Sampling Freq.
Accelerometer 200,000 µs

Barometer 200,000 µs
Battery 200,000 µs

Gravitometer 200,000 µs
Gyroscope 200,000 µs
Luximeter 200,000 µs

Linear Accelerometer 200,000 µs
Location Sensor 180 s
Magnetometer 200.000 µs

Network Traffic Sensor 60 s
Network Event Sensor *

CPU 10 s
Proximity sensor 200,000 µs
Rotation sensor 200,000 µs
Screen Sensor *
Thermometer 200,000 µs

Activity Recognition 60 s

into 3 main layers. In the model layer are the classes that define the entities of the appli-

cation and the mechanisms of their persistence. In the view layer are the user interface

layout definitions and in the control layer the classes are responsible for processing the

user-made requests, using the classes of the model layer.

In addition to using this design pattern, the application logic was split between two

modules, based on the development methodology used in the AWARE app itself 6: citytracksaware-

client and citytracksaware-core. The client module contains all the code of the view layer

while the core module contains all the control and model layer code.

In addition, the core module was subdivided into two more layers. In one of them

are contained the models and controls of the sensors accessed through AWARE. In the

other are contained the models and controls regarding the trip itself. The purpose of this

division was to separate the code that takes care of the integration with the AWARE API

and the code that manages the data informed by the user to facilitate the interpretation and

maintenance of the code. The application architecture is illustrated in component diagram

of Figure 3.6.

In addition, two auxiliary classes, that are used in all layers, have been developed.

One allows persistence of any instance of a class in JSON format files through the Gson7

API and the other allows the asynchronous sending and re-transmission of HTTP requests

to a web server through the Volley API8. The first was used to store the travel data in the

device during the collection and the second was used to transmit the data collected to the

6https://github.com/denzilferreira/aware-client
7https://github.com/google/gson
8https://github.com/google/volley

42

Figure 3.6: Component diagram of the CityTracks-AWARE application.

collection server.

The collection server received the data sent in JSON format by HTTP POST mes-

sages and persisted in a MongoDB database 9 through a web service developed through

the PHP-Slim10 framework using the PHP MongoDB Driver11 to access the database.

The application server used was the NGINX12 and, to allow greater scalability of the ap-

plication, PHP-FPM13 was used as FastCGI process manager. Figure 3.7 illustrates the

architecture of collection server with its respective components. The entire environment

was configured on a virtual machine running Ubuntu Server14 .

Figure 3.7: Diagram of collection server components.

Although the architecture of the application followed good development practices,

during the Alpha tests some performance problems were noticed, especially when it came

to sending the data to the server. This was mainly due to the use of the layered archi-

tecture, because to ensure the isolation between the layers, the app had to read all the

data collected by each sensor in the model layer, and then send them to the server in the

control layer. This caused an overload in the RAM of lower-end smartphones, especially

in sensors with sampling frequencies less than one second, such as the accelerometer.

To optimize this process, in order to respect the limitations of the mobile devices in

which the application would be used, the responsibility of reading the data collected by the

sensors was moved to the control layer. This way, each sample collected was read and sent

9https://www.mongodb.com/
10https://www.slimframework.com/
11https://docs.mongodb.com/ecosystem/drivers/php/
12https://nginx.org/
13https://php-fpm.org/
14https://www.ubuntu.com/server

43

immediately, freeing up memory space faster and reducing the total RAM consumption

of the device. This change in processing of data is illustrated in Figures 3.8 and 3.9.

In Figure 3.8 the initial approach, in which the SensorManager requests all data col-

lected by a sensor to a SensorDataDAO, is detailed. The DAO retrieves a collection of

SensorDataModel instances whose size is the number of samples collected by that sensor.

After that, the SensorManager iterates through the retrieved collection and requests the

upload of each instance through the UploadService.

Figure 3.8: Sequence diagram of the processing of data collected by the sensors in the
CityTracks-AWARE app when sending to the server (Before).

In Figure 3.9 the optimized approach is detailed, in which the SensorDataDAO is re-

placed by a DataManager, that is responsible for creating the SensorDataModel instances

from sensor samples and sending the upload requests through the SensorDataUploadSer-

vice. Here the DataManager accumulates the responsibilities of the SensorDataDAO and

the SensorManager in order to allow a better memory utilization. Instead of reading all

sensor samples at once, only one instance is read and uploaded at a time, which reduces

the overall memory consumption of the application.

To analyze the data collected and calculate the performance metrics, a program was

developed in Python15 using the Pandas API16 for reading and manipulating the JSON

database exported from the collection server through the MongoDB data export tool17.

In order to reduce the effect of possible collection errors occurring during the transi-

tion between travel modes, the developed program ignores the inferences made within 30

seconds before and after the travel mode changes reported by the user.
15https://www.python.org/
16https://pandas.pydata.org/
17https://docs.mongodb.com/manual/reference/program/mongoexport/

44

Figure 3.9: Sequence diagram of the processing of data collected by the sensors in the
CityTracks-AWARE app when sending to the server (After).

The developed program calculates the confusion matrix based on the collected data

and, from it, extracts the metrics used for performance evaluation.

3.6.2 Data

A total of 6 users participated in the data collection, however, due to unknown lim-

itations of the Activity Recognition API implementation, only 3 devices had inferences

from it. Therefore, the other devices were discarded from this analysis.

A total of 24 trips were collected, generating more than 48 hours of trip data. Table 3.9

presents the number of trips, hours, inferences and the modalities used by each device.

More than 50% of the trips and inferences considered were collected by the same device,

what might suggest a significant level of bias in the results.

Table 3.9: Data collected by device.

Device # Trips # Hours # Inferences Modes

1 4 6,92694 418
Train, Bus, Subway,

On Foot, Still

2 4 22,4775 260
Bus, Subway, On Foot

Light Rail, Car

3 16 18,9978 1301
Train, Bus, Subway,

On Foot, Still

In Figure 3.10 the amount of inferences made by each travel mode collected is pre-

sented. It is possible to observe that a great amount of inferences was carried out on foot

and a significant amount was made on bus, train, subway and still. This unbalancing of

classes can also be considered to be a meaningful factor in the metrics evaluation, since

the performance of classes with lower number of samples can be too much above or below

true performance.

45

Figure 3.10: Inferences made by travel mode collected.

3.6.3 Results

In order to obtain the performance metrics, a Python script was developed to group all

the data collected with motorized travel modes in the “Vehicle” class, since the Activity

Recognition API does not make distinctions between vehicles. An error (False Negative

and False Positive) or a hit (True Positive and True Negative) was computed for each

inference made by the API, and from this information we constructed a confusion matrix

indicating the errors and hits for each class, which is presented on Table 3.10.

Table 3.10: Confusion matrix grouping the data collected within the five activity classes
recognized by the ActivityRecognition API.

Inferred \
Collected Other Tilting Still On Foot Biking Vehicle

Other 0 0 28 26 0 158
Tilting 0 0 17 123 0 103

Still 0 0 86 127 0 250
On Foot 0 0 8 471 0 83
Biking 0 0 0 8 0 33
Vehicle 0 0 6 10 0 442

The total of True Positives, False Positives, Accuracy, Precision, Recall, and F1-score

for each class, as well as the overall average, are presented in Table 3.11. These were

calculated using the same formulas that were used in the CityTracks-RT performance

evaluation, described in Section 3.5.

Table 3.11: Performance metrics for each activity class recognized by the ActivityRecog-
nition API. *TP - True Positives, FP - False Positives.

Class TP FP Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Other 0 212 89.3 0.0 0.0 0.0
Tilting 0 243 87.7 0.0 0.0 0.0
Still 86 377 80.0 18.6 59.3 28.3
On Foot 471 91 80.5 83.8 61.6 71.0
Biking 0.0 41 97.9 0.0 0.0 0.0
Vehicle 442 16 67.5 96.5 41.3 57.9
Average 166.5 163 83.5 33.1 27.0 26.2

46

3.6.4 Discussion

From the results obtained, it can be observed that the Activity Recognition API recog-

nizes vehicles with high precision but low recall. Therefore, in context-aware applications

that are not concerned with the quantity, but rather with the quality of the inferences for

this travel mode, it may be useful. In applications where it is important to detect the

maximum occurrences of this mode class, it may not perform satisfactorily.

With regards to motion segments “On Foot”, it has reasonable precision and recall,

reaching a F1-score of 71%. If all classes inferred are considered, the Activity Recog-

nition API did not perform satisfactorily, justifying the development of new APIs and

comparative studies with more users. In addition, the limited set of supported travel mode

classes reduces the possibility of using this API in applications directed to intelligent

transport systems, since for this type of application, the distinction between motorized

travel modes is very important.

3.7 Conclusion

In the present chapter the problem of real-time travel mode detection using GPS lo-

cation traces has been addressed. This is an important problem for the development of

intelligent transportation systems and other smart mobility applications, that may provide

faster and personalized services and message delivery, based on this contextual informa-

tion. Therefore, it has been identified that the only travel mode detection API that is

publicly available, on the most popular mobile platform, does not fully meet the require-

ments of context-aware applications, by design. Also, through field tests, it has been

showed that its performance is not optimal for all the scenarios it supports, justifying the

need of improvement or the development of a new API for that.

Thus, a technique that allows detecting the travel mode of smartphone users, in real

time, is proposed and evaluated. This technique is implemented on a prototype Android

application, named CityTracks-RT, that used supervised machine learning models, built

with the Weka API in Java. The performance of the prototype was evaluated through

the analysis of quantitative metrics obtained via field tests with 37 volunteers in Rio de

Janeiro and the results indicate that the proposed technique is capable of detecting the

travel modes of smartphone users in urban centers.

47

4. Real-Time Travel Mode and Trip Purpose Prediction with
Location Sensors

4.1 Introduction

Among the several features that may be used to describe mobility patterns, the travel

mode and the trip purpose specifically contribute to their better understanding, thus bene-

fiting the generation of automatic (or semi-automatic) travel diaries [100], recommenda-

tion systems, personal assistants and other mobile data collection applications [117,118].

Therefore, the detection of the travel modes used and the prediction of trip purposes

through smartphone sensors data have emerged as two research challenges in recent years.

Both of these problems have been deeply investigated in isolation, while the problem of

inferring mode and purpose at the same time and, more specifically, using the same pre-

processing algorithm has been less explored.

Since travel mode detection and trip purpose prediction might need to happen at the

same time, the use of a single preprocessing algorithm would imply lower computational

cost making this kind of inference more feasible in real-time applications, specially if part

of the processing, or all of it, is done within the mobile device, which can have limited

computational resources, depending on the vendor and model.

Meanwhile, Knowledge Discovery in Databases (KDD) [45] has been successfully

used in different scenarios to discover relevant knowledge from data. It can be under-

stood as the overall process of discovering useful knowledge from data, encompassing

steps for data selection, preprocessing, transformation, mining and interpretation. De-

pending on the domain in which it is applied, this process can make use of very different

preprocessing techniques and machine learning (ML) algorithms.

Therefore, the work presented in this chapter intends to advance the state of the art,

by proposing a new KDD method that can be used to perform travel mode detection and

48

trip purpose prediction, based on location traces obtained through smartphone sensors,

using a single preprocessing method, reducing the complexity and the total processing

cost of a real-time solution. The proposed method explores general and domain-specific

preprocessing techniques, as well as supervised ML algorithms, with the use of automated

machine learning (AutoML) techniques [64].

The proposed method was evaluated with regards to its performance, using the data

collected by 19 smartphone users in the metropolitan area of Rio de Janeiro, during the

Spring of 2017 and the results were compared with the ones obtained by an existing

solution proposed in [126].

The contributions of this work are three-fold:

1. A KDD method for building real-time travel mode detection and trip purpose pre-

diction models using the same preprocessing steps and AutoML techniques.

2. Evaluation of the models built, using the proposed KDD method, with respect to

accuracy, precision, recall and F1-score, using real smartphone data.

3. Comparison of the models built, with the proposed KDD method, with baseline

travel mode detection model proposed in a previous work [126].

Parts of these contributions were published in [127]. The rest of this chapter is or-

ganized as follows. Section 4.2 provides a summary of the most relevant related works.

Section 4.3 presents the dataset used in this study and how it was obtained. Section 4.4

presents the proposed solution. Section 4.5 details the evaluation experiments settings

and results. Section 4.6 discusses the results obtained. Finally, Section 4.7 outlines the

main conclusions.

4.2 Related Works

In this section the most relevant works about travel mode detection, trip purpose pre-

diction and joint travel mode and trip purpose identification are presented.

4.2.1 Travel Mode Detection

In an early work, the CityTracks [107] application was implemented as an iOS app

and its main objective was to collect smartphone users’ travel mode data through partic-

ipatory and opportunistic sensing. The collected data was used to develop a complete

49

travel detection algorithm that performs the data preprocessing and segmentation, feature

extraction and summarization, and travel mode classification through a hierarchical ML

model. More recently, the CityTracks-RT [126] application for real-time travel mode de-

tection was implemented, based on an adaptation of the algorithm developed in [107].

This application was implemented as an Android app and field-tested with 19 volunteers

on the metropolitan area of the city of Rio de Janeiro, Brazil.

With a similar methodology, the work in [13] collected GPS, accelerometer and gyro-

scope data, and the travel mode used by smartphone users to create a real-time travel mode

detection technique based on cascading of ML classifiers. The proposed technique was

implemented in a prototype on the Android platform, called WAID (What Am I Doing).

However, one of the limitations of this work was the lack of the prototype performance

evaluation, since all the classification analysis was performed before the prototype devel-

opment.

In [131], the authors collected data from accelerometer, gravity sensor, gyroscope,

magnetometer and barometer to elaborate a technique for online travel mode detection

with low energy consumption. The non-use of GPS allowed a great reduction in energy

consumption and the proposed technique presented a good performance during the sim-

ulation of online detection. However, some of the sensors used, such as barometer and

gravity sensor, are not available in most of today’s smartphones, which restricts the use

of this technique in a real scenario.

4.2.2 Trip Purpose Prediction

In [96] authors proposed a trip purpose prediction technique using random forests

trained on GPS and accelerometer data collected by 156 participants, taking part in a

one-week travel survey in Switzerland completed in 20121. Their following work [95]

explored the effect of personalized training on trip purpose prediction accuracy and their

latest work [94] compared the performance of travel data collection through dedicated

GPS devices and smartphones. In their studies they utilize and improve a previously

developed travel diary application [119] that performed travel mode detection and trip

purpose prediction, although each task was performed based on a different set of features.

In [39] authors propose the use of online location-based search and discovery services,

such as Google Places API to improve prediction. They apply nested logit and random

forest to identify five trip purposes from trips collected during the 2010 Travel Behaviour

Inventory in Minneapolis-St. Paul metropolitan area. A future work suggested by the

1http://www.project-peacox.eu/

50

authors is the use of location data collected via smartphones (or GPS loggers) for model

testing, rather than location data from traditional travel behaviour surveys [39].

Other recent works in this topic explored semi-automated trip purpose inference through

participatory sensing [120], combination of GPS trajectories, POIs and social media

data [92], data selection from different seasons for model training and testing [59], trip

purpose detection with artificial neural networks with particle swarm optimization [148].

4.2.3 Joint Travel Mode and Trip Purpose Identification

In comparison with individual travel mode detection and trip purpose prediction, fewer

works proposed techniques that could simultaneously perform both tasks. One of the

earliest works to present that type of solution [129] proposed the use of heuristics based on

features extracted from GPS logs, such as average speed and maximum speed, combined

with GIS information, such as street lines and public transportation stops, to identify

the travel modes and purposes of trips made by citizens in Sidney, Australia. The main

disadvantage of their technique is that it is highly dependent on GIS information, which

might not always be available, accurate and up to date.

In [19] authors proposed the use of GPS coordinates of trip ends combined with POI

information derived from GIS data to identify the trip purpose and a mix of features de-

rived from GPS speed and GIS data to identify travel modes. One of the main advantages

of the technique proposed in the present work, in comparison to the one proposed by

them, is the fact that it utilizes the same features, extracted from GPS logs, for both tasks,

reducing the amount of preprocessing required and removing the dependence of GIS data

availability.

A more recent work [56] proposed a solution that utilized GPS, Accelerometer, WiFi

and Cellular Network extracted features combined with GIS derived features to train a

Bayesian model for travel mode detection. The trip purpose identification was performed

based on historical mobility patterns which were obtained through the most frequent

routes and places each person moved to. The main limitation of this technique was the

fact that it was meant to run in an offline manner, meaning that the travel mode detection

and, especially, the trip purpose identification could not be done in real time. Also, the ar-

chitecture proposed performed all data processing and classification in a back-end server,

creating a dependency with Internet connectivity availability.

The latest solution was proposed in CTASS [11] and consisted of a digital frame-

work for contextualized travel behaviour advice to cardiac patients that utilized the Moves

51

app [40] for non-motorized travel mode detection in conjunction of its Health Travel Be-

haviour (HTB) app that performed trip purpose identification and trip data collection. This

work, however, did not detail which features and classification models were used for each

detection task, neither presented a quantitative evaluation of its performance.

4.3 Study Data

In order to analyze travel mode and trip purpose together using location traces, a data

collection experiment was conducted using an Android application, named CityTracks-

RT. Therefore, in this section the operation of this application and the methodology ap-

plied during the field tests of this application are described.

The CityTracks-RT app is a data collection tool that performs real-time travel mode

detection through five pre-trained classifiers. It stores preprocessed location data, user in-

formed travel modes and inferences made, in the smartphone memory, while periodically

transferring them to a centralized server in which the data is aggregated for latter analysis.

It was implemented as a prototype of the travel mode detection solution proposed in a

previous work [126], whose operation is illustrated by Figure 3.1.

To allow further investigation of travel mode detection and trip purpose prediction,

this application was modified to store and transfer the raw location data collected, and the

trips purposes, to the server as well. No changes were made to the travel mode detection

algorithm itself.

Each sample stored contained raw numerical attributes, such as latitude, longitude, al-

titude, precision, timestamp, measured speed and bearing in degrees, as well as calculated

attributes, such as the speed, derived from the Euclidean distance between two consecu-

tive traces divided by their timestamp difference, and the acceleration, derived from the

calculated speed differences between two traces divided by their timestamp differences.

During the field tests, 19 smartphone users from the metropolitan area of Rio de

Janeiro were asked to install the app, start data collection whenever they were commuting

through one of the travel modes available on the app and manually inform the travel mode

being used as well as the trip purpose.

The travel mode options supported by the app were:

1. Walking, i.e., walking on foot,

52

2. Biking, i.e., riding a bike,

3. Car, i.e., driving a car,

4. Bus, i.e., taking a bus.

5. Motorcycle, i.e., riding a motorcycle.

The trip purpose options available for selection were:

1. Home, i.e., going his/her home.

2. Work, i.e., going to work place.

3. Education, i.e., going to educational facility, e.g., going to school.

4. Shopping, i.e., going to shopping facility, e.g, going to an outlet.

5. Leisure, i.e., going to recreational facility, e.g, going to the park.

6. Other, i.e., none of the above.

The proportions of collected samples for each travel mode and trip purpose class are

presented on Figure 4.1.

(a) (b)

Figure 4.1: Frequency of location traces collected by travel mode (a) and trip purpose (b).

The collected travel modes were fairly distributed between car, bus and walking, since

these are the most common ways of transportation in the city where this study was con-

ducted, that were available at the app. A small amount of locations samples was collected

by bicycle and none were collected by motorcycle.

With regards to trip purposes, most samples were collected while going home, to

some leisure activity or other purpose that was not related to the alternatives present in

the app. A smaller, but meaningful amount of samples was collected while going to work,

shopping or to some education activity, such as going to the university.

53

Table 4.1 presents a summary of the data collected by each device. A common chal-

lenge on participatory sensing studies is being able to engage all volunteers in the data

collection task so as to ensure data quality and quantity. Since the data collection was

completely voluntary, meaning no monetary incentives were offered to the study partici-

pants, it is possible to notice that some of them were not as engaged as others, which can

cause some bias on the final results of this study towards the mobility behaviours of the

most commited users.

Table 4.1: Descriptive statistics of location traces by device.

Device
ID

Samples
#

Avg.
Precision

Std.
Precision

Travel
Modes

Trip
Purposes

Hours
#

1 2472 8.06 7.19 2 1 1.27
2 3861 16.14 37.65 1 2 1.73
3 3942 21.54 34.52 1 1 4.14
4 1051 19.67 76.42 1 1 0.46
5 8134 4.55 4.91 3 4 2.95
6 93 55.57 40.00 1 1 0.06
7 1782 14.28 43.27 1 2 0.42
8 562 33.52 128.47 1 2 1.08
9 4675 27.38 109.70 1 2 1.00

10 27101 11.89 22.92 4 4 11.93
11 2120 11.35 17.77 3 3 10.32
12 1450 6.82 15.80 2 2 0.41
13 1403 86.35 166.66 2 1 0.80
14 3402 4.60 35.38 2 4 1.76
15 429 29.03 9.70 1 1 0.21
16 5836 32.90 54.93 3 4 2.67
17 1635 13.69 23.98 2 2 0.70
18 129 16.51 6.93 2 2 0.10
19 647 18.44 112.97 2 2 0.03
All 70724 22.75 45.96 4 5 42.04

With regards to the geographical distribution of collected data, Figure 4.2 displays the

projection of collected locations coordinates on the Rio de Janeiro metropolitan area map.

Locations were mostly collected on the main roads that connect the Downtown area with

the North Zone, Niteroi city and South Zone, as well as within the Downtown area itself.

As a disclaimer, most of the volunteers were students from the Federal University of

the State of Rio de Janeiro. The remaining volunteers were friends and relatives of the

author. The author has also participated in the data collection activity. All volunteers

received an illustrated manual that instructed them to start the data collection whenever

they were commuting through one of the travel modes available in the app and selecting

the travel mode option before the movement started. Whenever they switched modes,

they should select another travel mode option, if it was available, or stop data collection,

otherwise.

54

(a) (b)

Figure 4.2: Projection of the location traces coordinates on the Rio de Janeiro metropoli-
tan area (a) and Downtown region (b) map.

4.4 Proposed Solution

In this section the proposed solution for travel mode detection and trip purpose pre-

diction is described with detail. First the preprocessing steps, that will be applied to the

location traces in order to extract motion segments and relevant features, are explained.

Then the AutoML techniques used to identify the best supervised ML algorithms for

travel mode detection and trip purpose prediction is are detailed. Figure 4.3 presents on

overview of the proposed solution.

Figure 4.3: Overview of travel mode detection and trip purpose prediction solution.

55

4.4.1 Preprocessing

In order to allow the use of ML algorithms to try to identify a pattern between the

information obtained by the smartphone sensors and the current travel mode and trip

purpose some preprocessing steps were applied based on previous techniques [13, 100,

107, 126] and KDD best practices [45].

Data Transformation. The first step was to convert the locations traces stored in

JSON files to a flat table containing the columns: device_id, timestamp, travel_mode,

trip_purpose, latitude, longitude, altitude, bearing, precision, calculated_speed, calcu-

lated_acceleration, measured_speed. A total 70,724 table rows was obtained from the

location files.

After that, two general filtering techniques were applied as well as two techniques

specially designed for location traces preprocessing. The numbers of samples removed

by each filtering technique are presented on Table 4.2.

Table 4.2: Number of location samples removed by each filtering technique.

Filtering Technique Samples Removed #
Remove location samples with invalid attributes values 0
Remove duplicated location samples 0
Remove locations with precision above 50 meters 2,459
Remove locations within 1 minute of travel mode change 180
Total 2,639

The exclusion of imprecise location traces avoids training the ML models on noisy

data and the 50 meter threshold has been used. Higher precision thresholds have been

used on previous works [107,126]. However, as demonstrated by Figure 4.4, the 50 meter

threshold allows capturing the most relevant part of the samples distribution with regards

to precision and guarantees that the locations considered on the data analysis and ML

model training are as reliable as possible.

According to IEEE Spectrum2 future smartphones will be able to capture locations

with 30-centimeter maximum accuracy instead of today’s 5 meter threshold. That in-

dicates that smartphones would be able to capture locations on a much higher average

precision, therefore, suggesting the use of a lower boundary on this filtering step.

The exclusion of location traces within 1 minute of each travel mode change attenuates

the effect of data collection mistakes, since the data collectors might fail to inform travel

mode changes right after or before they happen. In [90] a 20 second window was used,

but as some travel modes might impose difficulties on informing the mode changes that

quickly the window size of 1 minute was chosen.
2https://spectrum.ieee.org/semiconductors/design/superaccurate-gps-coming-to-smartphones-in-2018

56

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Locations frequency distribution by measurement precision: (a) All location
traces, (b) Locations within 200 meters threshold, (c) Locations within 100 meters thresh-
old, (d) Locations within 50 meter threshold (e), Locations within 25 meters threshold (f),
Locations within 12.5 meters threshold (g).

A total of 2,639 location samples were removed leaving 68,084 location samples left

to be used on the next preprocessing steps.

Data Segmentation. The second step was to extract the trip segments [122], also

known as triplegs [100], of each trip from each device. A tripleg will correspond to a

specific travel mode, as a trip will correspond to a single trip purpose. Also, the trip iden-

tification was made by using a timestamp difference threshold of 30 minutes, indicating

that location traces with timestamps differences higher than this threshold will be consid-

ered as distinct trips. This threshold was used to avoid considering multiple trips collected

with the same trip purpose as one single trip, which could possibly distort the results ob-

tained. For the trip segmentation, i.e, tripleg identification, no threshold was used. Every

time a travel mode change was detected within a trip, a new tripleg was considered to

exist.

After that, constrained time segments were extracted from each tripleg using a window

size of 60 seconds, denominated chunks [107]. In previous works, multiple window sizes

have been used. In [126], the window size used was 90 seconds. The 60 seconds window

size was chosen because it is considerably smaller than the 90 seconds of [107, 126]

presenting an opportunity to improve the state of the art with respect to detection speed.

A total of 78 trips, 98 triplegs and 2,170 chunks were extracted from the 68,084 re-

maining location traces and submitted to the next preprocessing step in which several

classification features were extracted from each chunk.

Feature Extraction and Normalization. In this step chunk features, that would be

57

useful to train a classification model, were extracted, using supervised ML, for predicting

the travel mode and the trip purpose based on a single chunk. That type of classifica-

tion has also been referred to as online travel mode detection and real-time trip purpose

prediction [13, 39, 126, 131].

In that sense, a subset of the features extracted in previous works [13, 107, 126] was

selected and two additional features were included in order to improve classification ac-

curacy. These attributes were the weekday in which each chunk was collected and the

period of the day extracted from on its locations timestamps. These two attributes might

be very useful since the travel modes and trip purposes can be highly correlated to them.

To analyze these correlations as well as the correlation between the travel modes and the

trip purposes the Pearson Correlation Test was executed using the R function cor.test.

Table 4.3 presents the results of those tests. Degrees of freedom were omitted from

the table since they had same value for all tests (2,168).

Table 4.3: Pearson correlation tests of chunk categorical attributes.

Explanatory
Variable (x)

Response
Variable (y)

Sample Estimated
Correlation (r)

T-Test
Statistic (t)

Significance
Level (p)

Travel Mode Trip Purpose -0.188877 -8.9556 <2.2e-16
Weekday Trip Purpose 0.0312288 1.4548 0.1459
Period of Day Trip Purpose -0.01660698 -0.77336 0.4394
Weekday Travel Mode -0.1481358 -6.9744 4.063e-12
Period of Day Travel Mode 0.05862079 2.7342 0.006304

As the only tests that presented a significance value below 0.05 were the ones that

analyzed the correlation between the travel mode with trip purpose, and the correlation

between the weekday and the period of the day with the trip purpose, it can only be

assumed that the true correlation is different than zero for these variables. That being said,

the highest estimated correlation (r) was between travel mode and trip purpose, which

indicates that these variables are more correlated, within the dataset of this study, than the

others. Provided that, it was chosen not to consider them as predictors of one another in

the evaluation experiments to reduce the bias of the results obtained. Also, as these travel

mode and trip purpose predictions could occur in parallel, it would not make sense to use

one as input to the other in the proposed solution.

In Figure 4.5 scatter plots that indicate some intuitive thresholds of feature values

for each travel mode are presented as well as the relationships between the categorical

variables and the trip purposes collected.

Partitioning and Resampling. In order to generate training and test datasets for

travel mode detection and trip purpose prediction, two copies of the original dataset were

generated, denominated travelModeDataset and tripPurposeDataset. To mitigate the bias

58

(a) (b)

(c) (d)

Figure 4.5: Scatter plot for travel mode relationships with maximum calculated acceler-
ation (a) and mean measured speed (b). Scatter plots for trip purpose relationships with
travel mode (c) and weekday (d).

generated by the high correlation observed between travel modes and trip purposes the trip

purpose column was removed from travelModeDataset and the travel mode column was

removed from the tripPurposeDataset.

This correlation could, however, be explored in a larger study, as the detected travel

mode could be used as feature for detecting the trip purpose and vice-versa. After that,

subsets of the dataset samples was randomly assigned for training and testing, generat-

ing four new datasets trainingTravelMode, testingTravelMode, trainingTripPurpose and

testingTripPurpose.

Some standard preprocessing techniques were also applied at this step, such as re-

placing NA values with 0, removing ID columns and normalizing the numerical features

to a common order of magnitude, since numerical features with higher order can induce

training bias on the ML algorithm, which could distort the classification results.

Since the dataset used in this study is unbalance with respect to travel mode classes,

applying ML algorithms directly to them might create some bias towards the classes with

the larger amount of samples. Provided that, three different resampling techniques were

applied to reduce this bias: up-sampling, down-sampling and synthetic minority over-

sampling (SMOTE). These techniques allowed the generation of more balanced datasets

and the performance comparison of the ML algorithms with each one of them.

59

The up-sampling technique replicates samples from the less frequent classes until the

number of samples for each class is equal. Meanwhile, the down-sampling technique

removes samples from the most frequent classes until their count is equal to the less fre-

quent class. The SMOTE technique is the most used and most effective, since it generates

synthetic samples that maintain the feature values distribution of each class. Those tech-

niques were applied through the functions available on the caret package3.

4.4.2 Classification

In the classification phase, instead of basing the ML algorithms and parameterization

choices on statistical intuition or previous works, two different AutoML techniques were

applied to identify the best ML algorithm and configuration. This method is summarized

by Figure 4.6 and is described with detail in the remainder of this section.

Figure 4.6: Steps used to find the best classifiers for travel mode detection and trip purpose
prediction.

Random Search. In order to perform travel mode detection and trip purpose predic-

tion the h2o.automl framework was used to do a random search for the best classifier and

its most efficient hyper-parameter configuration.

The framework used selects the best classifier based on a single performance metric,

whose default option is the log-loss, which is defined by equation:

LogLoss=−

M∑
c=1

yo,clog(po,c); (4.1)

where M in the number of possible class labels, log is the natural logarithm, y is a bi-

3https://topepo.github.io/caret/subsampling-for-class-imbalances.html

60

nary indicator (0 or 1) of whether class label c is the correct classification for observation

o and p is the model’s predicted probability that observation o is of class c, as defined

in [60]. The classifiers considered on the search space were Deep Neural Network [60],

Distributed Random Forest [58], Generalized Linear Model [99], Gradient Boosting Ma-

chine [51], Naive Bayes Classifier [97], Generalized Low Rank Models [136], Stacked

Ensemble [144], XGBoost [29], Cox Proportional Hazards [6]. The only parameter that

was configured for the search was the maximum search time, which was set to 5 minutes.

Bayesian Optimization. As an alternative for the Random Search, the Bayesian Op-

timization technique was used through the AutoWEKA package for WEKA 3.

This package applies Bayesian Optimization through the SMAC algorithm [76] to find

the best classifier and hyper-parameter configurations through exploration of the whole

parameter space and exploitation of good configuration spaces in relation to a perfor-

mance metric, whose default option is the error rate, which is defined by equation:

ErRate= 1−
∑

Ci . Cmax,x

∫
x∈Hi

P(Ci|x)p(x)dx; (4.2)

where x is an instance, Ci is a class into which an instance is classified, Hi is the area/re-

gion that a classifier function h classifies as Ci [53].

In contrast with more classic AutoML approaches, such as grid search and random

search, Bayesian Optimization is considered to be more efficient on large search spaces.

AutoWEKA was one of the first implementations of this technique for ML frameworks

and still one of the most complete ones, with 28 learners implemented [76].

In order to allow the comparison of this technique with the random search the same

time limit was used on both, which was set to 5 minutes.

4.5 Performance Evaluation

In this section the performance of the proposed solution as well as the CityTracks-

RT real-time travel mode detection solution are evaluated. First, the travel mode and

trip purpose classification performance of the proposed solution with Random Search and

Bayesian Optimization is evaluated using 70% of data for training and 30% for testing.

Then, the proposed solution performance using Bayesian Optimization is evaluated in a

10-fold cross-validation experiment. Lastly, the performance of the CityTracks-RT so-

lution is evaluated using 10-fold cross-validation as well. In addition, the performance

61

metrics of the real-time detection performed by CityTracks-RT during the field tests are

presented.

4.5.1 Evaluation Metrics

The classification performance metrics considered in this analysis are accuracy, pre-

cision, recall and F1-score [44]. Those metrics were extracted for each travel mode class

and the average per class values are reported for each classifier. The average values are

weighted by the number of samples of each class.

4.5.2 Proposed Solution with Random Search

When doing random search, the h2o-automl framework selected the best model for

each training dataset and their performances were evaluated on the test dataset using met-

rics derived from the confusion matrix. Tables 4.4 and 4.5 present the best travel mode and

trip purpose classifiers, respectively, their overall accuracy, precision, recall and F1-score

on the test set, for each resampling technique.

Table 4.4: Performance metrics of the best classifiers found through Random Search on
the test set for travel mode detection.

Sampling
Technique Best Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%)

None Distributed Random Forest 78 69 67 67
Up-sampling Gradient Boosting Machine 86 94 61 71

Down-sampling Gradient Boosting Machine 69 60 53 49
SMOTE Gradient Boosting Machine 76 65 63 63

Table 4.5: Performance metrics of the best classifiers found through Random Search on
the test set for trip purpose prediction.

Sampling
Technique Best Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%)

None Gradient Boosting Machine 80 52 51 50
Up-sampling Distributed Random Forest 76 - 23 -

Down-sampling Distributed Random Forest 78 45 43 43
SMOTE Distributed Random Forest 79 50 47 47

4.5.3 Proposed Solution with Bayesian Optimization

When applying Bayesian Optimization through AutoWEKA, better results have been

achieved, as expected. Tables 4.6 and 4.7 present the performance metrics for the best

performing classifiers on the travel mode classification and trip purpose prediction for

each resampling technique on the test set.

The large gap observed between the results obtained with Bayesian Optimization in

comparison with Random Search, suggests that the 5 minutes search time was not enough

62

Table 4.6: Performance metrics of the best classifiers found through Bayesian Opt. on the
test set for travel mode detection.

Sampling
Technique Best Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%)

None Support Vector Machine 78 78 78 78
Up-sampling Random Forest 86 86 86 86

Down-sampling Decision Tree 83 85 83 82
SMOTE Ada Boost 99 99 99 99

Table 4.7: Performance metrics of the best classifiers found through Bayesian Opt. on the
test set for trip purpose prediction.

Sampling
Technique Best Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%)

None Random Forest 96 96 96 96
Up-sampling Random Forest 89 90 89 89

Down-sampling Random Committee 99 99 99 99
SMOTE Random Forest 98 98 98 98

to allow the Random Search to find good regions of the hyperparameter space while the

sequential nature of the Bayesian Optimization procedure allowed it to find the good

regions within this same search time.

Therefore, in order to perform a more reliable evaluation of the best classifiers ob-

tained through Bayesian Optimization, a 10-fold cross-validation was executed with these

models. Tables 4.8 and 4.9 present average per fold performance metrics for the travel

mode and trip purpose classification.

Table 4.8: Average per fold performance metrics of travel mode detection on the 10-fold
cross-validation.

Sampling
Technique Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%)

None Support Vector Machine 76 76 76 76
Up-sampling Random Forest 88 88 88 88

Down-sampling Decision Tree 70 70 70 70
SMOTE Ada Boost 83 82 83 82

4.5.4 Baseline Solution

The CityTrack-RT travel mode detection algorithm applied a hierarchical classifica-

tion strategy that used a Support Vector Machine [32] classifier to differentiate between

motorized and non-motorized travel modes and a Decision Table classifier to identify

which motorized or non-motorized travel mode was being used. Two additional classifiers

worked in parallel with the main classification algorithm. One of them was a Bayesian

Network classifier [52] which performed only non-motorized travel mode classification.

The other one was a Multilayer Perceptron classifier [60] which tried to identify which

travel mode was being used without the hierarchical approach.

63

Table 4.9: Average per fold performance metrics of trip purpose prediction on the 10-fold
cross-validation.

Sampling
Technique Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%)

None Random Forest 69 69 69 69
Up-sampling Random Forest 81 80 81 80

Down-sampling Random Committee 67 66 67 66
SMOTE Random Forest 77 77 77 77

In order to compare this solution with the one proposed in this chapter, a 10-fold

cross-validation is performed using the CityTracksRT models. Table 4.10 summarizes

the overall performance metrics obtained by each of the classifiers used in the hierarchical

classification strategy, and the Multilayer Perceptron classifier.

Table 4.10: 10-fold cross-validation performance metrics of the classifiers used in the
CityTracks-RT application.

Classes
Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%)

5 Multilayer Perceptron 51 48 51 48
2 Support Vector Machine 68 47 68 55
4 Decision Table 77 76 77 76
2 Bayesian Networks 91 88 91 87

In addition, Table 4.11 summarizes the performance of the real-time travel mode de-

tection during the field tests of the CityTracks-RT app. The main difference is that in this

evaluation, the algorithms were trained only once, with a fix set of samples, which were

collected before the field tests.

Table 4.11: Performance metrics of the classifiers used in the field tests of CityTracks-RT
application.

Classes
Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%)

4 Multilayer Perceptron 34 31 28 29
2 Support Vector Machine 58 61 54 57
4 Decision Table 59 40 42 41
2 Bayesian Networks 88 44 50 47

4.6 Discussion

In this section the proposed method is compared with the CityTracks-RT solution and

the main strengths and weaknesses of both techniques are discussed. Also, the impact of

varying windows sizes on the travel mode detection and trip purpose prediction perfor-

mance of the propose technique are analyzed.

64

4.6.1 Travel Mode Detection

With respect to travel mode detection, the proposed method presented better overall

performance on the 10-fold cross-validation experiment reaching a maximum accuracy,

precision, recall and F1-Score of approximately 88% while classifying 4 different travel

modes with the Up-Sampling technique and Random Forest classifier. All other resam-

pling techniques presented metrics of at least 70% which indicates a good level of gener-

alization reached with any of them.

Table 4.12 presents the confusion matrix of the best performing travel mode classifier,

through which it can be observed that the classifier was able to detect bicycle, car and

walking segments very effectively, while a significant proportion of Bus segments had

been classified as car segments. This is likely due to the similarities between both mode

patterns depending on the traffic conditions in which the samples had been collected.

Table 4.12: Confusion matrix of best performing travel mode classifier.

True \ Predicted Bicycle Bus Car Walking
Bicycle 858 0 0 0
Bus 0 669 123 66
Car 4 83 729 42
Walking 0 61 31 766

The CityTracks-RT solution achieved a higher performance only when classifying

non-motorized travel modes with Bayesian Networks reaching a 91% accuracy. Since

the hierarchical classification algorithm depended on the Support Vector Machine and

Decision Table classifications its overall performance cannot be higher than the 76-77%

metrics obtained by the latest. The Multilayer Perceptron was the worst performing classi-

fier, presenting metrics between 48 and 50%, in contradiction with previous performance

evaluation results [126].

The performance disparity between CityTracks-RT solution and the proposed solution

might be inflated by the fact that no parameter tuning was performed on the former, as

the authors allegedly used default WEKA parametrization [126]. By applying AutoML

techniques it was possible to automatically test several hyper-parameter configurations on

each classifier and choose the best one based on a loss function.

4.6.2 Trip Purpose Prediction

With respect to trip purpose prediction, our method was able to identify the trip

purpose with a maximum accuracy, precision, recall and F1-Score of 81% using Up-

Sampling technique and Random Forest classifier also. For this classification problem the

65

Down-sampling technique and the direct classification (i.e., without resampling) did not

reach the 70% threshold on any performance metric, which suggests that for this classifi-

cation problem the SMOTE or Up-Sampling techniques are more appropriate.

Table 4.13 presents the confusion matrix of the best performing trip purpose classifier,

through which it can be observed that the classifier was able to predict the purpose of

trips to Education, Shopping and Leisure facilities very effectively. The category with

the highest miss rate was Home, which was very often confused by the classifier with the

Other category. This indicates that the samples of these two categories had similar feature

distributions.

Table 4.13: Confusion matrix of best performing trip purpose classifier.

True \ Predicted Education Home Leisure Other Shopping Work
Education 539 7 0 2 0 0
Home 31 358 42 68 14 35
Leisure 12 39 439 21 12 25
Other 29 77 20 380 15 27
Shopping 0 2 0 2 544 0
Work 27 55 36 29 4 397

Since the CityTracks-RT application did not perform trip purpose prediction no com-

parison can be made on that sense. One interesting aspect that could be explored in future

research is the use of location-based search and discovery services to improve trip purpose

prediction based on smartphone location traces, as proposed by [39].

4.6.3 Time Window Size

In order to analyze the impact of different windows sizes in the classification per-

formance of the best hyperparameter configurations of the proposed solution, using Up-

Sampling and Random Forest classifier, an additional experiment was conducted, using

window sizes of 30, 45, 60, 75 and 90 seconds. Through these experiments it can be

concluded that the optimal window size for travel mode detection was of 60 seconds, and

for trip purpose prediction was of 30 seconds. In Figure 4.7 it can be observed that the

performance improvement obtained in the travel mode detection by increasing the win-

dow size from 30 to 60 seconds, about 6%, is more significant than the one obtained in

trip purpose prediction when reducing the window size from 60 to 30 seconds, about 1%.

4.7 Conclusions

In the present chapter a hybrid solution for real-time travel mode detection and trip

purpose prediction was proposed. This solution uses a single preprocessing algorithm

66

(a) (b)

Figure 4.7: Performance metrics per window size for travel mode detection (a) and trip
purpose (b).

to extract features that are used to train classification models through supervised ML

algorithms.

Four resampling techniques and two AutoML methods were applied to identify the

best ML algorithm and its best hyperparameter configurations for each resampling tech-

nique. Their performance with respect to accuracy, precision, recall and F1-Score was

evaluated using k-fold cross-validation, with k=10.

The results show that the best ML algorithm in most cases is Random Forest and

the most indicated resampling technique is Up-Sampling. The most efficient automated

ML technique within the five minute search time was Bayesian Optimization and the

maximum accuracy reached for travel mode detection and trip purpose prediction on the

cross-validation experiments was 88% and 81%, respectively.

Therefore, it can be concluded that the proposed solution is capable of detecting the

travel mode and predict the trip purpose of a trip using only 60 seconds of smartphone

collected location data, allowing context-aware information systems to use this contex-

tual information to provide personalized services and better predict user behaviour with

respect to mobility patterns and transportation preferences.

67

5. Real-Time Travel Mode Detection with Multiple Sensors

5.1 Introduction

Almost all smartphones and other mobile devices currently include multiple sensors.

Allied with the increasing processing power and battery autonomy of these devices, these

sensors allow the discovery of important context information such as the travel mode be-

ing used, enabling many context-aware applications. Also, the fact that most people that

live in urban centers carry their smartphones to almost everywhere they go enables con-

tinuous sensing through these devices, which allows greater data collections and ubiquity

in the services provided through them.

In the last years, many smartphone-based travel mode detection techniques have been

developed. Most of them apply supervised machine learning (ML) algorithms, in con-

junction with advanced signal processing techniques (i.e., preprocessing techniques), to

extract relevant features from the data collected through sensors that are embedded in

these devices [106]. After a literature review, it was noted that although most of these

works have proposed innovative preprocessing techniques and ensembles of ML models,

few of them explore the usage of dimensionality reduction techniques in conjunction with

ML hyperparameter optimization. If applied properly, dimensionality reduction tech-

niques can greatly reduce ML model training cost(i.e. time, CPU and battery) without

compromising classification performance. Meanwhile, ML hyperparameter optimization

can improve ML model accuracy by finding the best possible configuration used for train-

ing.

In this chapter, an attempt to fill this gap is made by proposing the use of a well

known dimensionality reduction technique, the Principal Component Analysis (PCA),

and an Automated Machine Learning (AutoML) framework, the AutoSklearn [48], which

performs ML hyperparameter optimization, among other features. The improvement that

these methods can provide in classification accuracy and training cost by applying them

68

is evaluated over a travel mode detection technique (known as US-TransportationMode1)

and analyzing the resulting performance improvement for 12 different scenarios. Exper-

iments used real smartphone data from the TMD Dataset 2, which a benchmark dataset

for travel mode detection built by researchers from University of Bologna. Statistical

measures, such as skewness and kurtosis, were extracted along a sequence of time win-

dows, and the improvement observed with their addition to the classification model was

evaluated as well. Thus, the research hypothesis investigated in this study are as follows:

• Hypothesis 1. AutoML frameworks can generate more accurate classification mod-

els for travel mode detection than human experts. Automated Machine Learning

has been proved to outperform human experts in several domains [15, 75, 124].

Therefore, while its expected that it would generate better classification models for

travel mode detection, none of the related works presented this kind of evaluation

and comparison.

• Hypothesis 2. PCA can reduce classification cost in a multi-sensor travel mode

detection system without significant losses in model accuracy. While in [90] authors

have evaluated the impact of PCA for dimensionality reduction, their input data was

based only on GPS and accelerometer data. The dataset used in this study contains

data from 9 different sensors, from which up to 54 features were extracted what can

lead to new and richer results.

• Hypothesis 3. Skewness and Kurtosis, extracted from smartphone sensors measure-

ments for a sequence of time windows, can be used as features to classify modes

of transportation. Previous work [89] have evaluated this hypothesis to be false in

an experiment where only features extracted from GPS traces were considered, at

a granularity of one sample/min. In the present work however, a higher sampling

rates and a wider array of sensors, such as accelerometer, microphone and gyro-

scope, was used, what can lead to different conclusions.

In order to verify these hypotheses, performance metrics are analyzed using k-fold cross-

validation (k=10) [74] to identify the most suitable combination of feature engineering

techniques and ML configurations for the problem of detecting travel modes, in real time,

based on smartphone sensors. This is the first work to present evidence that AutoML

frameworks can outperform human experts in the combined algorithm selection and hy-

perparameter optimization of ML classifiers for the travel mode detection problem.

1https://github.com/vlomonaco/US-TransportationMode
2http://cs.unibo.it/projects/us-tm2017/index.html

69

The remainder of this chapter is structured as follows. Section 5.2 brings related

works and Section 5.3 analyzes the US-TransportationMode technique, characterizing

the TMD Dataset and conceptualizing the ML techniques that were used. Section 5.4

describes feature engineering techniques, including dimensionality reduction using PCA.

Section 5.5 describes and discusses the evaluation experiments and their results. Section

5.6 presents conclusions of this chapter.

5.2 Related Works

Table 5.1 summarizes related works, which indexes are shown in column 1. Next three

columns show respective number of sensors, number of extracted features and number of

detected travel modes for each related work. Column five lists the evaluated ML algo-

rithms: BN - Bayesian Networks, NB - Naive Bayes, SVM - Support Vector Machine,

MLP - Multilayer Perceptron, DT - Decision Table, RF - Random Forest, RT - Random

Tree, KNN - k-Nearest Neighbours, MNL - Multinomial Logistical Regression, NL -

Nested Logit, MDA - Multiple Discriminant Analysis, LR - Logistical Regression, DBN -

Dynamic Bayesian Network, CNN - Convolutional Neural Network, BC - Bayesian Clas-

sifier and AE - Autoencoder. Column six (AC - Algorithms Comparison) states whether

the related work compares ML algorithms performance. Column seven (PE - Parameter

Explanation) states whether it elicits which hyperparameter values were used for training.

Finally, column eight (PO - Parameter Optimization) states if the related work explicitly

used any hyperparameter optimization technique.

In [107], authors applied a KDD process [45] to develop an offline travel mode detec-

tion technique using location data collected from GPS, WiFi and Mobile Networks. The

main contributions of this work were the developed preprocessing techniques in order to

remove noisy samples and to augment data resolution, as well as the use of a hierarchical

classification model built with supervised ML algorithms, such as SVM and DT. Perfor-

mance evaluation used data collected from real smartphones. Main limitations were the

use of WEKA’s [142] default machine learning algorithms’ configurations and the fact

that it was not able to perform online travel mode detection. This second gap was filled

by [126], which adapted the technique to perform online travel mode detection. The new

technique was implemented on a prototype application and its performance was evaluated

through field tests. The maximum accuracy was achieved using a Multilayer Neural Net-

work classification model instead of the hierarchical model proposed in [107]. Despite the

incremental contribution of this work, the lack of machine learning parameters optimiza-

tion remained, since it also used default configurations available in WEKA Suite [142].

70

In [13], authors proposed an online travel mode detection technique using accelerom-

eter and gyroscope data, based on cascading ML classifiers [3]. It was implemented

in a prototype application, but performance evaluation was made through 10-fold cross-

validation instead of field tests. The main gap is the fact that authors did not clarify which

parameter configurations were used for machine learning algorithms and whether any

optimization technique was applied.

In [131], authors developed an energy efficient online travel mode detection technique

using data from accelerometer, gravity sensor, gyroscope, magnetometer and barometer.

They proposed the use of Primal Estimated Sub-Gradient Solver (Pegasos) with SVM to

allow online learning as well. This technique showed great results in simulation experi-

ments with training sets of varying sizes, but neither cross-validation or field tests were

performed. Also, authors did not clarify which parameters configurations were used for

SVM itself and if some form of hyperparameter optimization was performed.

In [43], authors propose several features based on accelerometer, magnetometer and

gyroscope sensors for offline travel mode detection and compare classification perfor-

mance using DT, kNN and SVM. The main limitation is that it neither specified which

hyperparameter values were used for these classifiers or disclaimed if any optimization

technique was used. In [121], accelerometer and gyroscope data are used to develop an

offline travel mode detection algorithm using RF. Authors state that most hyperparameter

were set to default values of the "randomForest" package implemented in R3. The only

exception was the number of trees, which was set to 100. Main limitations are the fact

that it did not use any optimization technique to identify best hyperparameter values and

that it does not compare the RF classifier performance with any other algorithm. In [8],

authors also use accelerometer and gyroscope data as well as GPS information to develop

an offline travel mode detection algorithm using MNL, NL and MDA for classification.

Although authors clarify which hyperparameter values were used, it is not clear whether

any optimization technique was used for selecting them.

In [28], authors present a technique that combines smartphone Hall-Effect magne-

tometer and accelerometer data to detect users’ mode of transportation in real time. It

applies advanced signal processing techniques and extracts features from each spectrum

of the Fast-Fourier Transform(FFT) of each second of movement, such as entropy, energy

ratio and spectral coefficients for each second of movement. Authors decided to build

a two-layer classifier using RF to distinguish stationary and non-stationary periods, and

NN to identify which travel mode was being used on non-stationary periods. Although

3https://cran.r-project.org/web/packages/randomForest/randomForest.pdf

71

this work clarified which parameters were used on each model and applied grid search to

optimize ML algorithm selection and hyperparameter configuration, it did not present the

parameters that were used for the grid search itself.

In [90], authors proposed an online travel mode detection technique that combined

GPS and accelerometer. They applied the “movelets” [9] technique for preprocessing,

PCA and Recursive Feature Elimination (RFE) for dimensionality reduction, kNN and

RF for classification, and 10-fold cross validation for performance evaluation. With re-

spect to hyperparameter optimization, authors performed a grid search based on accuracy

for the best k values of the kNN model, with k ranging from 1 to 100. For the RF model,

authors clarify which hyperparameters were used but do not elicit whether any optimiza-

tion was performed. Any comparison between different ML algorithms hyperparameter

configurations was presented.

In [10] and [139], authors augmented GPS data with socioeconomic information from

users to improve offline travel mode detection. In [10], dynamic Bayesian Networks were

built for classification and their performance was evaluated on five datasets and compared

to SVM, RF and MLP, whose hyperparameters were optimized using exhaustive grid

search, although their values are not informed in the paper. In [139], RFs are used to

build the main classification model and their performance is compared to MLP and SVM

models. Authors do not inform which hyperparameters values were used on each ML

algorithm and do not clarify whether any optimization technique was used.

In [89], authors compared several feature extraction techniques of different ML ap-

proaches, including Autoencoders for travel mode detection using GPS traces. They did

not, however, clarify which hyperparameters values were used, neither elicit the use of op-

timization techniques for their choices. Following the deep learning trend, in [34] authors

propose its use for offline travel mode detection based on GPS trajectories, removing the

need of feature engineering techniques. They compare multiple CNN architectures and

present performance metrics for each configuration. Although this work has elicited most

of the used hyperparameter values, default parameters were used for the back-propagation

algorithm (i.e. Adam [72]) and no comparison was made between different parametriza-

tion of this algorithm.

After reviewing the literature, it is clear that most works in travel mode detection

research do not clarify the hyperparameter used for machine learning algorithms training,

what can greatly decrease the level of research reproducibility on each of them. Also, even

fewer works explicitly apply any hyperparameter optimization technique, which could

greatly increase performance of the models built. Finally, a short amount of related works

72

Table 5.1: Summary of related works.

Ref. #Sensors #Features #Modes ML Algorithms AC PE PO

[107] 3 3 5

BN, NB, SVM
MLP, DT, RF,
RT, K-Means,

KNN, Ada Boost

3 7 7

[126] 3 3 4
MLP, SVM,

DT, BN 3 3 7

[13] 3 12 7

RF, DT, BN,
RT, SVM,

NB, Cascading,
Bagging, Boosting,

Voting, Stacking

3 7 7

[131] 5 61 6 BN, Pegasos (SVM) 3 7 7

[43] 3 14 5 DT, KNN, SVM 3 7 7

[121] 2 31 4 MNL, NL, MDA 3 7 7

[28] 2 136 7
SVM, LR,
Boosting,
RF, NN

3 7 3

[90] 2 140 5 KNN, RF 3 3 7

[10] 1 10 4
DBN, SVM,

RF, MLP 3 7 3

[139] 1 7 5 RF, MLP, SVM 3 7 7

[89] 1 20 4 BC, RF, MLP, AE 3 7 7

[34] 1 4 5
CNN, KNN, SVM,

DT, RT, MLP 3 7 3

apply dimensionality reduction to reduce ML training cost.

5.3 Travel Mode Detection Technique used in a Public Benchmark Dataset

The dataset used in this study is the TMD Dataset, made available by researchers

from University of Bologna in order to be used as a benchmark for travel mode detection

through smartphones. In this section is described the travel mode detection technique

that was implemented by these researchers, namely US-TransportationMode, and made

available with this dataset for further improvements and research reproducibility. Also,

this dataset is characterized with descriptive statistics and the main limitations on the per-

formance evaluation methods used by the authors are discussed, as well as improvements

that provided in the present work.

5.3.1 Travel Mode Detection Technique

The US-TransportationMode technique has an initial data preprocessing phase in which

data cleaning operations are performed, such as deleting measures from the sensors to ex-

clude and make the values of the sound and speed sensors positive.

Furthermore, sensors that returned a single data value as the result of sense were di-

rectly used, while sensors that returned more than one value could not be used directly,

since most of them were based on a coordinate system which was dependent on smart-

73

Raw Sensor Data Window Partitioning Feature Extraction

minimum maximum

std. deviation mean

Figure 5.1: Preprocessing steps of US-TransportationMode travel mode detection tech-
nique. Adapted from http://cs.unibo.it/projects/us-tm2017/.

phone orientation.

Some sensors in a smartphone return a single value and others return multiple values.

The US-TransportationMode technique uses an orientation-independent metric called mag-

nitude [12, 24, 135] that is applied to sensors based on a coordinate system that return

multiple values.

Given the values of sensor s on the x, y, and z axes, which are represented by vx,s,

vy,s and vz,s, the magnitude is obtained by Equation 5.1:

magnitude(s) = |vs|=
√
v2x,s+v

2
y,s+v

2
z,s (5.1)

The technique divides the dataset into 5 seconds non-overlapping time windows and

four features (i.e., maximum, minimum, mean and standard deviation values) are ex-

tracted from all sensors. Figure 5.1 illustrates the preprocessing steps using the ac-

celerometer readings of one of the volunteers as an example.

After preprocessing phase is completed, extracted features are fed into a supervised

machine learning algorithm for training and prediction using scikit-learn python library 4.

Four ML algorithms were used: Decision Trees [69], Random Forest [69], Support Vector

Machine [69] and Neural Networks [37].

5.3.2 Public Benchmark Dataset

In order to build the TMD Dataset, smartphone sensors data were collected by fifteen

volunteers and classified into five different travel modes: walking, car, still, train and bus.

The dataset is composed of a total of 226 labelled files representing activities correspond-

ing to more than 31 hours of data: 26% of data is annotated as walking, 25% as driving

a car, 24% as standing still, 20% as being on train, and 5% as being on bus. Figure 5.2

4http://scikit-learn.org/stable/

74

http://cs.unibo.it/projects/us-tm2017/

(a) (b)

Figure 5.2: Histogram of total number of samples collected by travel mode (a) and user
(b).

Table 5.2: Sensors considered on each Sensor Set.

Sensor Set Sensors
1 Accelerometer, Sound and Gyroscope

2

Accelerometer, Sound, Orientation,
Linear Acceleration, Gyroscope Uncalibrated,

Gyroscope, Game Rotation Vector
and Rotation Vector

3

Accelerometer, Sound, Orientation,
Linear Acceleration, Gyroscope Uncalibrated,

Gyroscope, Game Rotation Vector,
Rotation Vector and Speed

illustrates the amount of samples collected per mode and by each user.

For the data collection task, volunteers used an Android application that allowed them

to record their name, to start and stop the data collection and to label the travel mode being

used. The application also sampled 23 different sensors with a maximum frequency of 20

Hz. Raw sensed data sampled on the device was then saved to be later transferred to re-

searchers via a USB connection. Since many devices did not support all kinds of sensors,

most of them were excluded and 9 sensors remained on the final dataset: Accelerometer,

Sound (Microphone), Orientation, Linear acceleration, Speed (GPS), Gyroscope, Rota-

tion vector, Game rotation vector and Gyroscope uncalibrated.

5.3.3 Discussion

For the US-TransportationMode technique, authors evaluated and compared travel

mode detection performance using three sensor configurations described in Table 5.2.

The performance of each classifier and sensor set combination was evaluated using

the accuracy metric, which is classically defined by Equation 2.14.

A positive inference means that an instance in a given time window is classified as

belonging to a given class, and a negative inference means it is classified as not belonging

75

to that class. In other words, the accuracy gives the fraction of correct classifications.

During the evaluation experiments, authors used 50% of collected data for model training

and 50% for testing, reaching a maximum accuracy of 96% using all sensors available

and the Random Forest classifier, as observed on Table 5.3.

Table 5.3: US-TransportationMode original performance evaluation results.

Algorithm Sensor Set Accuracy (%)
Decision Tree 1 82
Decision Tree 2 86
Decision Tree 3 91

Random Forest 1 88
Random Forest 2 93
Random Forest 3 96

Support Vector Machine 1 85
Support Vector Machine 2 93
Support Vector Machine 3 95

Neural Network 1 85
Neural Network 2 92
Neural Network 3 95

The main weakness of this performance evaluation is the fact that only the accuracy

metric is analyzed, which might not give enough insights about the classifiers’ specificity

and sensitivity, For such, the precision, recall and F1-Score metrics should be also ana-

lyzed [105]. Besides, a KDD-based approach [45] would suggest the use of k-fold cross-

validation (with k=10) to provide more reliable results. In the present work, new results

for this technique are obtained using the mentioned metrics and validation techniques.

With respect to the travel mode detection technique itself, the main issues are the fact

that only low-order statistical features [66] were extracted, without applying any kind of

feature selection or dimensionality reduction. In addition, no hyperparameter optimiza-

tion technique was used on the ML model training, which could greatly improve model

accuracy.

In the present work, it is proposed to improve this technique with the use of PCA

for dimensionality reduction, Skewness and Kurtosis metrics for identifying high-order

statistical patterns and AutoML for combined algorithm selection and hyperparameter

optimization. Also, the performance of the proposed technique, that extends the US-

TransportationMode technique, is evaluated and compared with the original one in order

to identify the main benefits and drawbacks of both techniques.

76

5.4 Feature Engineering

In this work, two new features are extracted from the time windows obtained by US-

Transportation mode preprocessing algorithm, which are the Skewness and Kurtosis mea-

sures. These high-order statistical measures are extracted from each 5 second window

of each sensor reading, expecting that they might present different patterns for different

transportation modes, therefore improving classification performance of ML models.

Also, PCA is applied over the extracted features of each 5 seconds time window.

A simple heuristic strategy was applied in order to select the number of components to

be used, which consisted of selecting the first n components where n was equal to the

number of sensors that were used. For example, in the smallest sensor setting, 12 features

were originally extracted from 3 sensors (i.e., Accelerometer, Gyroscope, Sound). By

applying PCA, the first 3 components were extracted of those 12 features, reducing the

total number of predictor variables by 9 (i.e.,75%), which reduces computational and time

costs associated with model fitting.

During performance evaluation experiments, the classification accuracy and classifi-

cation cost with and without the use of PCA are compared, in order to evaluate its trade-off

for the travel mode detection task.

5.5 Evaluation Experiments

In this section the methods used on the evaluation experiments and the obtained re-

sults are described . In order to show the effects of the proposed modifications on the

US-TransportationMode travel mode detection technique, 10-fold cross-validation exper-

iments were executed on 12 different scenarios for each of the four ML algorithms used

on the original evaluation of the US-TransportationMode technique. Besides, the Au-

toSklearn was used to generate ensembles for each scenario, reaching the execution of a

total of 60 experiments.

Table 5.4 presents the features and sensor sets used on each different scenario and

Table 5.5 shows the hyperparameter configurations used for each machine learning al-

gorithm. These sensor sets and configurations were exactly the same used in the US-

TransportationMode original evaluation, except for the AutoSklearn configuration.

The AutoSklearn configuration only specifies parameters for the Global Optimization

process. Based on those configurations, the algorithm automatically evaluates and selects

77

Table 5.4: Sensors on each cross-validation experiment and respective features extracted
from 5 second time windows.

Scenario Sensor
Set Features

1 1 Minimum, Maximum, Mean and Standard Deviation of all sensors
2 2 Minimum, Maximum, Mean and Standard Deviation of all sensors
3 3 Minimum, Maximum, Mean, Standard Deviation of all sensors

4 1
3 Principal Components extracted from all sensors

Minimum, Maximum, Mean and Standard Deviation

5 2
8 Principal Components extracted from all sensors

Minimum, Maximum, Mean and Standard Deviation

6 3
9 Principal Components extracted from all sensors

Minimum, Maximum, Mean and Standard Deviation

7 1
Minimum, Maximum, Mean, Standard Deviation,

Skewness and Kurtosis of all sensors

8 2
Minimum, Maximum, Mean, Standard Deviation,

Skewness and Kurtosis of all sensors

9 3
Minimum, Maximum, Mean, Standard Deviation,

Skewness and Kurtosis of all sensors

10 1
3 Principal Components extracted from all sensors
Minimum, Maximum, Mean, Standard Deviation,

Skewness and Kurtosis

11 2
8 Principal Components extracted from all sensors
Minimum, Maximum, Mean, Standard Deviation,

Skewness and Kurtosis

12 3
9 Principal Components extracted from all sensors
Minimum, Maximum, Mean, Standard Deviation,

Skewness and Kurtosis

configurations that will be used to build final ensemble models. Since configuration de-

tails are too extensive to be put within this chapter, we made them publicly available at

the TMD-AutoML repository5. We have shared all source codes used in our experiments,

and also the data analysis, within this repository.

These configurations were generated by executing the AutoSklearn Global Optimiza-

tion on 50% of the dataset samples, which were randomly selected. Then, during the

k-fold cross-validation, the ensembles were retrained using only samples of the selected

folds, ignoring samples that were used to build the ensemble. This ensures that a fair

comparison of the performances between the AutoSklearn generated ensembles and the

other ML algorithms configurations is provided during the evaluation.

For performance comparisons, the accuracy, precision, recall and F1-Score metrics

were evaluated for each classifier in each scenario. The accuracy definition is provided in

Equation 2.14.

All the above metrics - accuracy, precision, recall and F1-Score - are defined and

obtained for each transportation mode class. However, as commonly done in several

related works, the average of each metric will be obtained for all classes.

In order to evaluate the impact of the applied dimensionality reduction techniques, the

5https://bitbucket.org/eltonfss/tmd-automl

78

Table 5.5: Hyperparameter configurations for each machine learning algorithm used for
each sensor set.

Learning
Algorithm

Sensor
Set

Hyperparameter
Configuration

Decision Table All

criterion=gini, splitter=best
max_depth=None, min_samples_split=2

min_samples_leaf=1, min_weight_fraction_leaf=0.0
max_features=None, random_state=None

max_leaf_nodes=None, min_impurity_decrease=0.0
min_impurity_split=None, class_weight=None

presort=False

Random Forest All

n_estimators=100, criterion=gini
max_depth=None, min_samples_split=2

min_samples_leaf=1, min_weight_fraction_leaf=0.0
max_features=auto, max_leaf_nodes=None

min_impurity_decrease=0.0, min_impurity_split=None
bootstrap=True, oob_score=False, n_jobs=1

random_state=None, verbose=0, warm_start=False
class_weight=None

Support Vector Machine 1

C=180, kernel=rbf, degree=3
gamma=auto, coef0=0.0, shrinking=True

probability=False, tol=0.001, cache_size=200
class_weight=None, verbose=False, max_iter=-1

decision_function_shape=ovr’, random_state=None
Support Vector Machine 2 and 3 C=100

Neural Networks 1

hidden_layer_sizes=900, activation=relu,
solver=adam, alpha=0.0001, batch_size=auto

learning_rate=constant, learning_rate_init=0.001
power_t=0.5, max_iter=600, shuffle=True

random_state=None, tol=-1, verbose=False
warm_start=False, momentum=0.9

nesterovs_momentum=True, early_stopping=False
validation_fraction=0.1, beta_1=0.9, beta_2=0.999

epsilon=1e-08
Neural Networks 2 hidden_layer_sizes=880
Neural Networks 3 hidden_layer_sizes=600

AutoSklearn All

time_left_for_this_task=300, per_run_time_limit=360
initial_configurations_via_metalearning=25

ensemble_size=50, ensemble_nbest=50
seed=1, ml_memory_limit=3072

include_estimators=None
exclude_estimators=None

include_preprocessors=None
exclude_preprocessors=None

resampling_strategy=’holdout’
resampling_strategy_arguments=None

configuration_mode=’SMAC’

79

Table 5.6: Performance metrics of all machine learning algorithms for scenarios 1, 2 and
3. *DT - Decision Tree, RF - Random Forest, SVM - Support Vector Machine, NN -
Neural Networks, ASE - AutoSklearn Ensemble.

Classifier Scenario Accuracy (%) Precision (%) Recall (%) F1-Score (%) Fitting
(ms)

Scoring
(ms)

DT 1 63 63 63 63 82 4
DT 2 65 64 65 64 238 4
DT 3 69 69 69 68 253 4
RF 1 71 70 71 70 1,506 92
RF 2 75 75 75 74 2,368 88
RF 3 79 78 79 78 2,486 84

SVM 1 67 66 67 66 2,443 385
SVM 2 72 71 72 71 1,468 443
SVM 3 77 77 77 76 1,381 439
NN 1 67 66 67 65 95,492 27
NN 2 72 71 72 70 103,909 28
NN 3 77 76 77 75 79,801 22
ASE 1 86 86 86 86 160,940 792
ASE 2 94 94 94 94 277,529 1,565
ASE 3 96 96 96 96 236,905 1,315

average fitting and scoring times on each cross-validation experiment was also evaluated.

The fitting time is the time spent for training the classifier and the scoring time is the time

spent during classification of unseen samples, which is used to generate the performance

metrics.

5.5.1 Obtained results

In this section, the performance metrics obtained during the experiments are presented

on shape of tables.

Table 5.6 presents the cross-validation performance of each classifier using the orig-

inal features of the US-TransportationMode technique, which is related to scenarios 1,

2 and 3 (see Table 5.5). Table 5.7 presents the cross-validation performance of each

classifier using features obtained from PCA reduction of the original feature sets of the

US-TransportationMode technique, which is related to scenarios 4, 5 and 6. Table 5.8

presents cross-validation performances of each classifier are related to scenarios 7, 8 and

9, which use the skewness and kurtosis features in addition to the original features of

the US-TransportationMode technique. Table 5.9 is related to scenarios 10, 11 and 12,

which considered features obtained from PCA reduction of the combination of skewness

and kurtosis features in addition to the original features of the US-TransportationMode

technique.

80

Table 5.7: Performance metrics of all machine learning algorithms for scenarios 4, 5 and
6.

Classifier Scenario Accuracy (%) Precision (%) Recall (%) F1-Score (%) Fitting
(ms)

Scoring
(ms)

DT 4 52 52 52 51 36 5
DT 5 61 61 61 61 64 3
DT 6 66 66 66 65 73 4
RF 4 60 59 60 58 808 100
RF 5 70 70 70 69 1,231 91
RF 6 74 74 74 73 1,611 88

SVM 4 53 54 53 51 2,740 360
SVM 5 62 61 62 61 1,686 377
SVM 6 69 69 69 68 1,337 308
NN 4 55 54 55 53 78,638 24
NN 5 64 64 64 63 81,214 24
NN 6 71 71 71 70 58,115 17
ASE 4 71 71 71 71 221,589 490
ASE 5 84 84 84 84 179,840 710
ASE 6 89 89 89 89 149,542 601

Table 5.8: Performance metrics of all machine learning algorithms for scenarios 7, 8 and
9.

Classifier Scenario Accuracy (%) Precision (%) Recall (%) F1-Score (%) Fitting
(ms)

Scoring
(ms)

DT 7 65 65 65 64 124 3
DT 8 65 65 65 64 347 3
DT 9 71 71 71 70 357 3
RF 7 73 72 73 72 1,750 83
RF 8 75 74 75 73 2,603 82
RF 9 80 80 80 79 2,719 80

SVM 7 59 60 59 57 3,995 626
SVM 8 66 66 66 64 4,811 1,015
SVM 9 71 72 71 70 5,264 1,076
NN 7 68 67 68 67 86,258 24
NN 8 69 67 69 67 98,461 26
NN 9 74 73 74 72 71,040 18
ASE 7 89 89 89 89 142,765 205
ASE 8 95 95 95 95 217,956 230
ASE 9 97 97 97 97 144,981 100

Table 5.9: Performance metrics of all machine learning algorithms for scenarios 10, 11
and 12.

Classifier Scenario Accuracy (%) Precision (%) Recall (%) F1-Score (%) Fitting
(ms)

Scoring
(ms)

DT 10 47 47 47 47 29 4
DT 11 57 57 57 57 65 4
DT 12 63 62 63 61 80 4
RF 10 53 53 53 52 823 102
RF 11 67 67 67 66 1,276 96
RF 12 72 72 72 71 1,683 89

SVM 10 53 55 53 52 3,239 363
SVM 11 59 59 59 58 1,933 386
SVM 12 66 66 66 65 1,520 318
NN 10 54 55 54 53 80,017 25
NN 11 61 61 61 60 80,680 24
NN 12 69 69 69 68 57,074 17
ASE 10 61 61 61 60 268,661 667
ASE 11 82 82 82 82 146,096 493
ASE 12 87 87 87 87 157,042 620

81

5.5.2 Discussion

In this section a discussion of the results obtained from the evaluation experiments is

provided as well as the main advantages and disadvantages of the proposed modifications

on US-TransportationMode technique and whether the research hypothesis of the present

work were proven to be true or not, based on collected performance metrics.

5.5.2.1 Classification Performance

As observed on the evaluation experiments, with respect to accuracy, precision, re-

call and F1-Score, the performance of all traditional classifiers dropped significantly in

comparison with the original evaluation of US-TransportationMode technique. One of

the main surprises was the Decision Tree classifier, which performed poorly on almost all

scenarios, reaching a maximum performance of 71% in accuracy and 70% in F1-Score.

Meanwhile, Random Forest performed reasonably well on most scenarios reaching a max-

imum performance of 80% in accuracy and 79% in F1-Score. Support Vector Machine

and Neural Networks did not perform as good as Random Forest, although their maxi-

mum accuracy and F1-Score values were very close to Random Forest’s ones, with 77%

and 76-75%, respectively.

The overall winners were the AutoSklearn Ensembles, whose average performance

was above 80% in accuracy, precision, recall and F1-Score. The maximum performance

was reached for scenario 9, in which the classifier obtained a 97% score on all metrics us-

ing the skewness and kurtosis features proposed in this work, in addition to the minimum,

maximum, average and standard deviation features proposed on the US-TransportationMode

technique. This performance was only 1% better than in scenario 3, where only the orig-

inal features were used.

The results show a small but significant improvement with the use of the two addi-

tional features (skewness and kurtosis). Another interesting fact about this best perform-

ing classifier was the fact that it was the smallest ensemble generated by AutoSklearn,

using only a rule based classifier and a Gradient Boosting Machine. Provided that, it

can be concluded that Hypothesis 1 can be considered to be true for the dataset used in

this study, while Hypothesis 3 should be further evaluated through a higher number of

experiments and data samples.

5.5.2.2 Classification Cost

With regard to time cost for both training and scoring, AutoSklearn Ensembles were

the worst performing classifiers since they required multiple models to be trained and

82

evaluated on each cross-validation fold. This can pose some restrictions with respect to

the usage of these classifiers on real-time applications, depending on the way they are

implemented.

The second worst performing classifier with respect to fitting time was the Neural

Networks, which was also the second best performing classifier with respect to scoring

time, a behaviour that is expected from this kind of machine learning algorithm [133].

Support Vector Machines were the second worst with respect to scoring time, being even

worse than AutoSklearn ensembles on some scenarios. This could be explained by the

fact that SVMs are essentially two-class classifiers and their adaptation for multi-class

problems can become quite complex depending on the number of classes and parameters

that are used [2].

Therefore, the overall winners on this evaluation perspective were Decision Trees and

Random Forests. If this aspect is to be considered as an important one on ML algorithm

selection, Random Forest would be the best pick, since it has also shown good classifica-

tion accuracy on most scenarios.

5.5.2.3 PCA Impact

As observed on Tables 5.6, 5.7, 5.8 and 5.9, applying PCA significantly reduced clas-

sification cost and accuracy on most scenarios. In some applications, this trade-off might

be worth since fitting a model with all available features might not be feasible on con-

strained devices, such as smartphones, for example. However, extracting components

from features introduces an additional preprocessing cost, which was measured through

the fold splitting time on the experiments of this work.

Table 5.10 shows the average splitting, fitting and scoring time on scenarios with

(4,5,6,10,11,12) and without PCA (1,2,3,7,8,9). It can be observed that applying PCA did

not significantly increase the average splitting time, neither reduced the average fitting

and scoring time. This might be a symptom that additional studies are required to better

apply this dimensionality reduction technique, which demands a deeper understanding of

the mathematical properties of its algorithm and of the data being analyzed. Therefore,

although it was not possible to state that Hypothesis 2 was true, it still not possible to

assure that it is false.

83

Table 5.10: Mean split fit and score time for each scenario.

Scenario Mean Split
Time (ms)

Mean Fit
Time (ms)

Mean Score
Time (ms)

1, 2, 3 253 64,453 353
4, 5, 6 255 51,902 213
7, 8, 9 322 52,229 238

10, 11, 12 352 53,348 214

5.6 Conclusion

This chapter proposed and evaluated the use of AutoML and feature engineering tech-

niques to enhance travel mode detection algorithms. The evaluation experiments showed

that these methods can greatly improve classification accuracy, reaching a maximum of

97% accuracy, precision, recall and F1-Score on the TMD Dataset using the AutoSklearn

Global Optimization framework. This is the first work to present evidence that AutoML

frameworks can outperform human researchers in the combined algorithm selection and

hyperparameter optimization of ML classifiers for the travel mode detection problem.

84

6. Real-Time Travel Mode Detection with Recurrent Neural
Networks

6.1 Introduction

Identifying the travel modes (i.e, modes of transportation) used by citizens on their

daily commute is useful for Intelligent Transportation Systems (ITS), since they can use

this information to better adapt transportation infrastructure in peak demand periods for

specific modes. An ubiquitous sensing device that has been explored in recent works

to allow this type of information extraction is the smartphone, which is now capable

of collecting multiple sensory data and executing sophisticated machine learning (ML)

inference [13, 126].

Many works have explored the use traditional ML algorithms and ensemble methods,

combined with general and domain specific feature extraction techniques. However, most

traditional ML algorithms require hard assumptions about the form of the function that

maps the input features to the detected travel modes [60].

Meanwhile, deep learning based techniques can automatically learn abstract represen-

tations of their input data enabling the development of more general travel mode detec-

tion models. Since most of them are based on the Neural Networks (NN) model, they are

capable of approximating any Borel measurable function [49] and the only assumption

required is that the pattern that we are trying to learn is composed by multiple abstract

patterns, which can be considered to be true for most ML problems [60].

Several travel mode detection techniques, that used deep learning algorithms, have

been proposed during the last decade. Most of them used classical deep learning archi-

tectures such as Convolutional Neural Networks (CNN) [34, 83], Deep Neural Networks

(DNNs) [42,89,98,140] and Recurrent Neural Networks (RNNs) [70,84,128,138]. How-

ever, none of them explored the use of RNNs in conjunction with time and frequency

85

domain feature extraction to enable the development of flexible travel mode detection

solutions based on multiple smartphone sensor readings.

Also, few of them proposed online detection mechanisms and none have provided a

general solution that could be used by developers and researchers in the development and

deployment of context-aware applications. Thus, in this chapter generic framework for

travel mode detection is proposed, leveraging Long-Short Term Memory (LSTM) cells

for building flexible online travel mode detection models. Therefore, the contributions of

this work are:

• TMDFramework, a generic framework that formalizes offline training and offline/on-

line travel mode inference.

• TMD-LSTM, an online travel mode detection method that allows detecting modes

of transportation in real-time using sensor features time series and LSTM based

RNNs.

• An architecture for the implementation of cloud-based and in-device detection ap-

proaches, using TMD-LSTM.

• Performance evaluation of TMD-LSTM using a public dataset of smartphone sen-

sor data acquired during trips in the city of Bologna, Italy.

• Analysis of the detection delay (i.e., time window size) influence on the classifica-

tion accuracy and model size.

6.2 Related Works

In this section, we review the main related works that applied deep learning techniques

for travel mode detection. Most of them using smartphone collected data, with a few

exceptions that were still worth reviewing given their contribution to the state-of-the-art.

The earliest works were published in 2016 and the latest in 2018, which might indicate

that this research branch still in its early development. Table 6.1 summarizes the related

works presented in this section.

In [38] authors proposed technique that uses a fully-connected Deep Neural Network

(DNN) with Stacked Denoising Autoencoder (SDA) to extract high-level features from

trajectory images generated from GPS logs. This works remains to be the only one in

which authors tried to develop a travel mode detection technique that utilized images as

input for the deep learning model.

86

Table 6.1: Summary of related works. *GPS - Global Positioning System, CDR - Call
Data Records **DL Model - Deep Learning Model, CNN - Convolutional Neural Net-
works, DNN - Deep Neural Networks, LSTM - Long-Short Term Memory, IO-HMM -
Input Output Hidden Markov Models, RNN - Recurrent Neural Networks, SAE - Stacked
Autoencoders, CGRNN - Control Gate based Recurrent Neural Network

Ref. Data DL Model Dataset Detection

[34] GPS Logs CNN
Microsoft
GeoLife Offline

[140] GPS Logs
CNN +
DNN

Microsoft
GeoLife Offline

[89] GPS Logs DNN
Microsoft
GeoLife +

OpenStreetMap
Offline

[84] CDR Logs
IO-HMM
+ LSTM

US Mobile
Carrier Offline

[98] Trip Data DNN
Preference data
for Swiss Metro Offline

[83] Accelerometer CNN Research dataset Online
[70] GPS Logs RNN Research dataset Offline

[42]
Accelerometer
Magnetometer

Gyroscope
DNN HTC dataset Online

[152] GPS Logs
SAE +
DNN

Microsoft
GeoLife Offline

[138] Accelerometer CGRNN HTC dataset Online
[128] GPS Logs LSTM Research dataset Offline

[38]
Trajectory

Images DNN
Microsoft
GeoLife +

Research dataset
Online

In [128] authors developed DeepTransport, a system system that uses a multi-task

deep Long Short-Term Memory (LSTM) architecture to learn and infer mobility and

travel mode choices patterns at macro scale using GPS records and transportation net-

work data as input. They implemented an end-to-end system that managed large-scale

data collection, pre-processing, learning, visualization and evaluation providing a useful

tool for urban planners that wish to predict and improve mobility at a citywide level.

In [138] authors proposed a technique that uses a Control Gate based Recurrent Neu-

ral Network (CGRNN) to learn travel mode patterns from accelerometer data obtained

through the HTC transportation mode dataset [150]. The use of accelerometer data as

input to the deep learning model has also been explored in a latter work [83] in which

the authors proposed a technique that uses a deep learning architecture based on the Con-

volution Neural Network (CNN) model to detect travel modes based on accelerometer

magnitude.

In [152] authors proposed a technique that uses a DNN with Stacked Autoencoder

(SA) to extract higher-level features from human crafted features obtained from GPS data,

87

such as travel distance, average speed, average acceleration, head direction change and

us/subway stop closeness. A similar approach has been explored in [42], but instead of

GPS authors used a combination of accelerometer, magnetometer and gyroscope features

as input to a feed-forward DNN to perform online detection in smartphones. The data

from this study was also obtained through the HTC transportation mode dataset [150].

In [70] authors presented a technique that extracts point-and-segment-based features

from GPS records and performs discretization and basis expansion to feed them into a

Maxout GRU RNN. They import the concept of embedding from natural language pro-

cessing in order convert continuous features into vector representations that can better

capture the general characteristics of the input data.

In [98] authors presented a technique for predicting travel mode choices based on his-

torical trip preference data from the Swiss Metro (SM) using DNN with a Function for

Availability of Alternatives (FAA). Although this work did not present a deep learning

technique for travel mode detection based on smartphones, the proposed DNN architec-

ture and FAA could be explored in future work of this area.

Another related work, that was reviewed for similar reasons was [84], in which the au-

thors propose a framework that builds up on cell phone data processing and activity based

inferences of travel purposes with an Input-Output Hidden Markov Model (IO-HMM),

followed by a LSTM network to learns travelers mobility sequences. Although this study

was conducted using CDR logs, which are not easily accessible, and data was syntheti-

cally labeled, through a probabilistic method, this work produced innovative tooling for

travel demand exploration and traffic simulation.

In [89] authors performed hypothesis testing of several feature extraction techniques

and comparison of different ML approaches including Autoencoders for travel mode de-

tection using GPS traces. The use of Autoencoders has also been explored in [140] where

the authors evaluate a technique that uses a Sparse Autoencoder (SA) to extract point-

level deep features (PLDF) from point-level handcrafted features (PLHF) and a CNN

to aggregate the PLDF and generate trajectory-level deep features (TLDF). As a result,

they propose a DNN architecture to detect the transportation mode using trajectory-level

handcrafted features (TLHF) and the TLDF.

The latest deep learning architecture for travel mode detection using smartphone data

was proposed in [34]. The authors develop a technique that uses a CNN to learn travel

mode patterns from speed, acceleration/deceleration, jerk, and bearing rate extracted from

GPS trajectories obtained through the Microsoft Geolife dataset [151] which has also been

88

used in [140], [89], [152] and [38].

After reviewing the related works described in this section, we conclude that the con-

cept of representational learning has been deeply explored, with several deep learning ar-

chitectures being proposed using DNN, CNN, RNN and Autoencoders as building blocks.

Most of the proposed models achieved good performance results in the evaluation exper-

iments, although some works of them applied simplistic evaluation metrics [83,138,140]

and a reduced number of travel mode classes [42, 98, 138].

Some common characteristics that can be noted are the use of GPS data as input [34,

38, 70, 89, 128, 140, 152] with the Microsoft GeoLife dataset [151] as a benchmark [34,

38, 89, 140, 152].

Also, few works focused on online detection, and none of them on online learning,

since most of the were focused on transportation planning, which does not require fast

identification of the travel mode being used as would be needed in real-time context-

aware applications such as Location Based Services (LBS) [106]. To that end, the only

works that presented an online detection solution [38,42,83,138] did not present a work-

ing prototype, neither a publicly accessible API (Application Programming Interface) or

library that could be used for real smartphone applications or future studies.

Some other aspects that were not explored in the existing literature, were the usage of

a larger set of smartphone sensors as input for the deep learning model, with a maximum

of three sensors being used [42]. This kind of architecture could allow the development

of a model that is resilient to sensor failure and malfunctioning. Also, the use of transfer

learning to accelerate personalized model training has not been explored, what could lead

to better performance in individualized travel mode detection.

6.3 Proposed Method

In this section we describe the proposed framework and method in details.

6.3.1 Generic Framework for Travel Mode Detection

TMDFramework consists of an open-source generic framework that will allow devel-

opers and researchers to build travel mode detection models using any combination of

sensors features, including raw features, as well as any number of travel modes. For-

mally, if we consider S = {s1,s2,s3, ...,sN} the set of N input feature vectors and t =

89

{t1, t2, t3, ..., tM} the set of M travel modes assigned to each feature vector in S, TMD-

Framework will generate a detection model using a supervised machine learning algo-

rithm, for any number of N andM.

The generated model can be used for both, online and offline travel mode detection.

Let F ′ be a set of new input feature vectors, the detection model will produce the output

vector t ′ which will contain the inferred travel modes for each input feature vector in

S ′. In the case of online detection, S ′ will contain only one input feature vector, which

corresponds to the most recent sensor readings, and, therefore, the detection model will

produce the single valued vector t ′, which corresponds to the currently inferred travel

mode. Figure 6.1 illustrates the proposed model in offline training and online/offline

detection procedures based on these terms.

Sensor Feature Vectors (S)

Learning Algorithm Detection Model

Travel Mode Vector (t)

Phase A - Offline Training

Detection ModelSensor Feature Vectors (S') Travel Mode Vector (t')

Phase B - Offline/Online Detection

Figure 6.1: Proposed offline training and offline/online detection mechanism.

Provided that, TMDFramework will allow the generation of models based on features

derived from GPS readings, as well as raw data and features obtained from accelerometer,

gyroscope, magnetometer and any other smartphone sensor. The set of travel modes that

can be detected should depend only on the availability of labeled training data, being the

learning algorithm L flexible enough to deal with any set of modes that are fed during the

training procedure.

Most importantly, TMDFramework should provide an API for mobile platforms, such

as Android and iOS, enabling its users to load previously trained models for real-time

inference or to train new ones based on newly collected data.

6.3.2 Online Travel Mode Detection with LSTM

TMD-LSTM consists of a travel mode detection method developed within the TMD-

Framework architecture that uses a deep RNN model based on Standard LSTM cells to

learn a travel mode detection model on any set of input features. LSTM is one of the

most popular and efficient methods for reducing the effects of vanishing and exploding

gradients when using recurrent connections within neural networks [115].

The LSTM approach changes the structure of hidden units from "sigmoid" or "tanh" to

90

h1

input
W23W12

h2

x1

x2

x3

xK

Wout

output

c1

c2

c3

cM

hP

Softmax

y

Win

W11 W22 WPP

output

c1

c2

c3

Softmax

y

Figure 6.2: TMD-LSTM model architecture.

memory cells, in which their inputs and output are controlled by gates. These gates con-

trol flow of information to hidden neurons and preserve extracted features from previous

timesteps [65, 80].

The motivation for using a deep RNN model is to be able to extract higher level

representations of the input features, while learning sequential dependencies between the

input samples. The first can be obtained through a deep architecture, while the second is

provided by the recurrent connections within the hidden layers and its training procedure.

Figure 6.2 presents a simplified version of the TMD-LSTM model architecture, where

K is the number of input features,M is the number of detected modes and P is the number

of hidden layers. The input features are represented as (x1,x2,x3, ...,xK) and the weight

matrix of the connections between the input layer and the first hidden layer, h1, is rep-

resented as Win. The weight matrices of the connections between h1,h2,h3, ...,hP are

represented as W12,W23, ...,W(P−1)P and the weight matrices of the recurrent connec-

tions of each hidden layer are represented as W11,W22, ...,WPP. The weight matrix of

the connections between the last hidden layer and the output layer, hP, is represented as

Wout. The logits of the network are represented as (c1,c2,c3, ...,cM). These are used

as input for a softmax function that generated the travel mode prediction y. The hidden

biases and the internal structure of the LSTMs cells are not represented for simplicity.

Formally, the input gate of an LSTM cell is defined as git = σ(WIgixt+Hgiht−1+

91

Wgcgigct−1+bgi), where WIgi is the weight matrix from the input layer to the input

gate, WHgi is the weight matrix from hidden state to the input gate, Wgcgi is the weight

matrix from cell activation to the input gate, and bgi is the bias of the input gate [115].

The forget gate is defined as gft = σ(WIgfxt+WHgfht−1+Wgcgfgct−1+bgf), where

WIgf is the weight matrix from the input layer to the forget gate, WHgf is the weight

matrix from the hidden state to the forget gate, Wgcgf is weight matrix from the cell

activation to the forget gate, and bgt is the bias of the forget gate [115]. The cell gate

is defined as gct = g
i
t tanh(WIgcxt+WHgcht−1+bgc) + gftg

c
t−1, where WIgc is the

weight matrix from the input layer to the cell gate, WHgc is the weight matrix from the

hidden state to the cell gate, and bgc is the bias of the cell gate [115]. The output gate is

defined as got = σ(WIgoxt+WHgoht−1+Wgcgogct+bgo), where WIgo is the weight

matrix from the input layer to the output gate, WHgo is the weight matrix from hidden

state to the output gate, Wgcgo is the weight matrix from cell activation to the output

gate, and bgo is the bias of the output gate [115]. Finally, the hidden state is computed as

ht = g
o
t tanh(gct).

6.3.3 Implementation Design

In this section we describe the implementation design of a real-time travel mode de-

tection solution based on TMDFramework and TMD-LSTM. The solution described con-

siders that the input features that are fed to the TMD-LSTM model are extracted from

time windows of sensor readings. In Figure 6.3 we present an overview of the real-time

travel mode inference using this architecture.

Raw
Sensor
Data

Preprocessing
Time
Window
Features

TMD-LSTM
Still

Walking Train

Bus

Car

Time
Window
Features

Figure 6.3: Travel Mode Inference using a trained TMD-LSTM.

The training and inference using the TMD-LSTM model can be done exclusively

via cloud infrastructure, were the sensory data collected by the user smartphone is sent

to a cloud server that identifies the corresponding mode of transportation and retrieves

it to the mobile client. This approach will likely consume less processing power from

smartphones, although it will require internet connectivity and a considerable amount of

data uploading, which can reduce the smartphone battery autonomy and, therefore, the

continuous sensing period.

An alternative to this approach is to use the cloud servers for model training only, and

92

deploying those models in the users’ smartphones for in-device travel mode inference.

This approach is likely to consume more processing and storage resources than the cloud-

based approach, but it will not rely on internet connectivity for inference, neither require

continuous uploading of the sensory data for obtaining travel mode inferences. Nonethe-

less, the sensory data can be uploaded to the server periodically to allow the customization

of the travel mode detection models of each user. The training and deployment of these

new models can be scheduled in a way that reduces the impact of the data uploading in the

smartphone battery autonomy and data usage. One possible strategy is to store the col-

lected samples in the smartphone persistent memory during daily commute and upload

the samples to the server for model update only when the smartphone is connected to a

charger and has WiFi [102] connectivity. The server should be able to train and deploy

the updated model while the smartphone is charging as well.

The cloud-based and in-device approaches illustrated in Figure 6.4.

Raw
Sensor
Data

Preprocessing
Time

Window
Features

TMD-LSTM Inference

Sensory Data

h1

input
W23W12

h2

x1

x2

x3

xk

Wout

output

c1

c2

c3

cm

hp

Softmax

y

Win

W11 W22 Wpp

output

c1

c2

c3

cm

Softmax

y

Wpp

In-Device Detection

Raw
Sensor
Data

Preprocessing TMD-LSTM Training
Time

Window
Features

Offline Training

Online InferenceRaw
Sensor
Data

Preprocessing
Time

Window
Features

TMD-LSTM Training

Sensory Data

TMD-LSTM Inference

Offline Training

Sensory Data

Deploy Detection Model
Preprocessing

Time
Window
Features

TMD-LSTM Training

Online Inference

Inference Output

Cloud-Based Detection

Preprocessing
Time

Window
Features

TMD-LSTM

Sensory
Data

Still

Walking Train

Bus
Car

Still

Walking Train

Bus
Car

Still

Walking Train

Bus
Car

Still

Walking Train

Bus
Car

Raw
Sensor
Data

Still

Walking Train

Bus
Car

Still

Walking Train

Bus
Car

Still

Walking Train

Bus
Car

Still

Walking Train

Bus
Car

Inference Output

Figure 6.4: Cloud-based and In-device real-time travel mode detection with TMD-LSTM.

Both approaches could be made available using the same cloud infrastructure and mo-

bile API. Data collected through Cloud-based or In-device detection could be integrated

for model training and context-aware applications could select the optimal periods for

leveraging each approach, as for example, activating in-device detection when internet

connectivity is dropping.

6.4 Experiments

In this section we evaluate the online detection feature of our framework through

cross-validation experiments using a public benchmark dataset [26].

93

6.4.1 Settings

Experiments were conducted using the TMDataset, which contains mobility data col-

lected by 16 volunteers in Bologna, Italy. It contains 226 labeled files corresponding to 31

hours of data: 26% Wall, 25% Car, 24% Still, 20% Train, 5% Bus. A total of 23 physical

and virtual sensors were sampled with a maximum frequency of 20 Hz.

In Figure 6.5 the number of samples per mode and user, which are not fully balanced,

are presented. Therefore, all data from user one (U1) is discarded, to reduce bias, and

SMOTE is applied on the training set of each cross-validation fold to balance the num-

ber of samples for each mode during training. From the initial 23 sensors sampled, 6

were discarded due to poor data quality and/or lack of samples. Therefore a total of 16

physical and virtual sensors were left for the experiment: Accelerometer, Linear Acceler-

ation, Gravity, Orientation, Gyroscope Uncalibrated, Gyroscope, Game Rotation Vector,

Rotation Vector, Proximity, Sound, Light, Pressure, Speed, Step Counter, Magnetic Field

Uncalibrated, Magnetic Field. The magnitude metric [135] was extracted from all three

axis sensors of this list, in order to make the learning and inference independent of the

orientation of the device during data collection.

(a) (b)

Figure 6.5: Sample distributions per travel mode (a) and user (b).

After segmenting the sensor readings in time series of 5 seconds, 20 features were

extracted from the series of each sensor, 13 from the time domain: min, max, mean,

standard deviation, median, skewness, kurtosis, range, variance, entropy, 1st-quartile, 3rd-

quartile and interquartile range; 7 from the frequency domain, obtained through the Fast

Fourier Transform [22] of each series: highest magnitude and its frequency, total spectrum

and phase, spectral density, entropy and centroid. A total of 320 features was extracted

from each window with forward filling for missing features.

The features extracted were scaled based on the interquartile range and the best fea-

tures were selected using Recursive Feature Elimination (RFE) with Random Forest (RF) [91]

94

and K-Best [104] feature selection based on Mutual Information for Classification [33].

Table 6.2 lists a total of 126 features selected, being 87 from the time domain and 39 from

the frequency domain.

The features extracted are used in 10-fold cross-validation experiments with 12 dif-

ferent ML algorithms: AutoML, Naive Bayes (NB), AdaBoost (AB), Support Vector Ma-

chine (SVM), Decision Tree (DT), RF, K-Nearest Neighbours (KNN), Feedforward NN

(FNN), Deep FNN (DFNN), RNN and Logistic Regression (LR). The RNN model cor-

responds to the TMD-LSTM method proposed in Section 6.3.2. The FNN and DFNN

models correspond to networks with up to 1 hidden layer, and networks with at least one

two hidden layers, respectively. The term (D)FNN will be used to reference both models

from now on. Figure 6.6 presents an overview of the evaluation experiments process.

Raw Data
Collection

262 csv files

Data Transformation
and Cleaning

Window Segmentation
and Feature Extraction

Feature Scaling
and Selection

Model Training
and Testing

242 csv files

#S x 320 dataframeS x 126 dataframe

Figure 6.6: Evaluation experiments process overview. Window size = 1 second, #S =
80566; Window size = 5 seconds, #S = 16041; Window size = 10s, #S = 7967.

After running the experiments with 5 second time windows, these were reproduced us-

ing time windows of 1 and 10 seconds as well, in order to evaluate the impact of different

window sizes on performance.

6.4.2 Details of Training and Implementation

The (D)FNN and RNN models were implemented using Tensorflow [1] Python library

and trained using Adaptive Gradient Algorithm (AdaGrad) [36] over batches of 128 sam-

ples in 1000 iterations with exponential decay learning rate initialized to 0.1, 0.01 and

0.001 with decay rate of 96%. For regularization, L2 norm is applied with β= 0.01. The

dataset is not shuffled in the to allow the RNNs to identify sequential patterns within the

samples. The RNN architecture implemented used Stateful LSMT Cells [30], that used

the number of samples in each training batch as the maximum number of timesteps, t,

preserved in the cell’s memory.

95

Table 6.2: Best features selected from the multiple sensors.

Sensor Time Domain Features Frequency Domain
Features (FFT)

Gyroscope

Range, Max, Entropy,
Mean, Min, Median,
Variance, Interquartile Range,
Standard Deviation, 1st-Quartile,
3rd-Quartile

Total Spectrum,
Highest Magnitude,
Spectral Density,
Spectral Entropy

Gyroscope
Uncalibrated

1st-Quartile, Median, 3rd-Quartile,
Entropy, Variance, Max,
Standard Deviation, Mean, Min,
Interquartile Range, Range

Spectral Density,
Total Spectrum,
Highest Magnitude
Spectral Entropy

Magnetic
Field

1st-Quartile, 3rd-Quartile, Min,
Max, Mean, Median,
Entropy

Highest Magnitude,
Total Spectrum,
Spectral Entropy

Magnetic
Field
Uncalibrated

1st-Quartile, Median, 3rd-Quartile,
Max, Mean, Min,
Entropy

Highest Magnitude,
Spectral Density,
Total Spectrum,
Spectral Entropy

Pressure
1st-Quartile, 3rd-Quartile Mean,
Min, Median, Max

Total Spectrum,
Spectral Density,
Highest Magnitude

Accelerometer

Min, Mean, Standard Deviation,
1st-Quartile, 3rd-Quartile, Variance,
Range, Max, Median,
Entropy, Interquartile Range

Spectral Centroid,
Highest Magnitude,
Spectral Density,
Spectral Entropy,
Total Spectrum

Linear
Acceleration

Variance, Entropy, 1st-Quartile,
Median, 3rd-Quartile,
Interquartile Range, Max,
Min, Mean, Standard Deviation

Spectral Density,
Total Spectrum,
Spectral Entropy,
Highest Magnitude

Orientation

1st-Quartile, Median, 3rd-Quartile,
Min, Mean, Max,
Interquartile Range, Range, Variance,
Entropy, Standard Deviation

Total Spectrum,
Highest Magnitude,
Spectral Entropy

Gravity
Entropy, Mean, 1st-Quartile,
Median, 3rd-Quartile

Spectral Density,
Highest Magnitude,
Total Spectrum,
Spectral Entropy

Rotation
Vector

Entropy, Max, Mean,
Min, 1st-Quartile, Median,
3rd-Quartile

Highest Magnitude,
Spectral Entropy

Game
Rotation
Vector

Entropy
Total Spectrum,
Highest Magnitude,
Spectral Entropy

For the (D)FNN models, multiple configurations with ReLu and Leaky ReLu activa-

tion are evaluated. For the RNN models, configurations with and without dropout are

tested as well. The number of hidden layers in each configuration varied from 1 to 4

hidden layers and the number of units in each layer was derived from the number of in-

put features. The 1st hidden layer had 126 units and the subsequent layers had half the

number of units of its preceding layers, rounded down.

6.4.3 Results Analysis

In this section the analysis of the experiment results is presented in four steps. First,

the experiment results with 5 second time windows are presented. After that, the results

with 1 and 10 seconds are analyzed. Lastly, an overall analysis is made considering the

96

results with the three window sizes.

6.4.3.1 Five Second Time Windows

In Table 6.3 it can be observed that the only models that reached an average accuracy

equal or higher than 90% when using the 5 second time windows were the ones generated

by AutoML, DT, RF and RNNs. From these, only AutoML, RF and RNNs obtained an

average precision, recall and f1-score equal or higher than 90% and only AutoML and RF

obtained a kappa coefficient equal or higher than 90%.

Table 6.3: Average accuracy (A), precision (P), recall (R), F1-score (F1) , kappa coeffi-
cient (Kappa) and model size (Size) per-fold obtained by the best configurations of each
ML algorithm tested using 5 second time windows.

ML Alg. A(%) P(%) R(%) F1(%) Kappa(%) Size
AutoML 96 95 95 95 95 117.9 MB
NB 54 50 52 47 41 10.5 KB
AB 76 70 75 71 69 69.5 KB
SVM 74 75 69 74 65 13.8 MB
DT 91 87 88 87 88 159.9 KB
RF 95 93 93 93 94 3.6 MB
KNN 87 81 86 83 83 41.2 MB
FNN 84 84 84 84 80 100.2 KB
DFNN 83 83 82 83 78 114.0 KB
LR 26 26 28 23 09 5.8 KB
RNN 90 90 90 90 87 314.5 KB

With respect to the model size, the lowest average size reported was from the LR

models, but these were also the worst performing models with respect to classification

accuracy. Provided that, the focus of this analysis will be on the comparison of the average

model size of the models with highest average accuracy: AutoML, RF, DT and RNN.

The average model size for the AutoML models was above 100MB, which might

represent a huge chunk of the RAM memory of a low end smartphone. When considering

the RF models, the average size drops to 3.6MB which still considerably large, but much

more suitable for smartphones.

Nonetheless, the RNN and DT models present an even better trade-off between clas-

sification accuracy and model size, reaching at least 90% accuracy with average model

size below 1MB. In conjunction with the computational cost of the ML model, the model

size can be a critical aspect for the in-device processing of the travel mode detection algo-

rithm. In that sense, RNNs present average 90% accuracy, precision, recall and F1-Score

with average model size bellow 400KB.

With regards to the computational cost, LSTM based RNN time complexity isO(W),

whereW is the set of weights of the network, while DT is O(N), whereN is the number

of samples used in training, and RF is O(MN), where M is the number of trees in the

97

forest [65]. Since the RNN complexity is determined by a constant W, its computational

cost does not increase with the number of samples used for training and therefore is more

suitable for in-device processing than DT and RF [87].

Figure 6.7 illustrates the impact of different numbers of layers and initial learning rate

in RNNs accuracy and model size. Also, the variation of accuracy and model size when

using dropout of 0.5 or no dropout can be observed. In general, increasing the number of

layers above 3 hidden layers did not lead to better accuracy and the model size increased

linearly with respect to the number of layers. The use of dropout of 0.5 caused a small

increase in model size and did not provide better accuracy in most configurations. The use

of an initial learning rate below 0.01 did not lead to better results in most configurations

as well.

(a) (b)

Figure 6.7: RNNs accuracy (a) and size (b) obtained for multiple hyperparameter config-
urations, using 5 second time windows.

Figure 6.14 presents the average train and test confusion matrices of the best perform-

ing RNN configuration, with 3 hidden layers, no dropout and initial learning rate of 0.01.

The models built with this configuration were able to learn the patterns of the five travel

modes present in the evaluation dataset very well, as can be observed on the training set

confusion matrices. However, when analyzing the test matrices, it can concluded that the

Still and Walking patterns presented better generalization than the ones of Car, Train and

Bus modes, although the true positive rate for these classes was above 80%. The gener-

alization performance refers to the accuracy of the NN in classification of unseen data,

which is represented by the test set [116].

In addition to the previous results, Figure 6.8 illustrates the impact of different num-

bers of layers and initial learning rate in (D)FNNs accuracy and model size. Also, the

variation of accuracy and model size when using ReLu or Leaky-ReLu as hidden layer

activation function can be observed.

98

(a) (b)

Figure 6.8: (D)FNNs accuracy (a) and size (b) obtained for multiple hyperparameter con-
figurations, using 5 second time windows.

For FNNs, the best performance was reached when using 1 hidden layer, ReLu hidden

activation and initial learning rate of 0.1, while for DFNNs the best performance was

reached with 2 hidden layer, Leaky ReLu hidden activation and initial learning rate of

0.1. The average training and testing confusion matrices of the best performing FNNs

and DFNNs configurations are presented in Figure 6.14 also.

6.4.3.2 One Second Time Windows

In Table 6.4 we observe that the only models that reached an average accuracy equal

or higher than 90% when using the 1 second time windows were the ones generated by

AutoML and RF. From these, none have obtained an average precision, recall and f1-score

equal or higher than 90% and only AutoML obtained a kappa coefficient equal to 90%.

Table 6.4: Average accuracy (A), precision (P), recall (R), F1-score (F1) , kappa coeffi-
cient (Kappa) and model size (Size) per-fold obtained by the best configurations of each
ML algorithm tested using 1 second time windows.

ML Alg. A(%) P(%) R(%) F1(%) Kappa(%) Size
AutoML 92 89 90 89 90 713.9 MB
NB 54 57 46 47 38 10.4 KB
AB 73 67 72 67 65 69.6 KB
SVM 34 44 33 29 16 15.8 MB
DT 87 82 84 83 82 1.1 MB
RF 91 88 89 89 88 26.0 MB
KNN 85 79 83 81 81 204.8 MB
FNN 67 68 67 67 59 100 KB
DFNN 70 71 70 70 63 105.7 KB
LR 34 34 36 29 18 5.8 KB
RNN 77 78 77 77 71 273.8 KB

With respect to the model size, the lowest average size reported was, again, from the

LR models, but these were also the worst performing models with respect to classification

accuracy, again. Provided that, the focus of this analysis will be on the comparison of the

average model size of the models with highest average accuracy: AutoML and RF.

99

The average model size for the best AutoML models was above 700MB, which might

represent an even greater chunk of the RAM memory of a low end smartphone, in com-

parison to the 100MB of the models generated with 5 second time windows. When con-

sidering the RF models, the average size drops to 26MB which is more than seven times

larger than the models generated for 5 second time windows.

Provided that, it could be observed that the DT models present an better trade-off be-

tween classification accuracy and model size, reaching 87% accuracy with average model

size of 1.1MB. In this configuration, RNNs have presented a modest performance, with

an average accuracy of 77% and model size bellow 400KB.

Figure 6.9 illustrates the impact of different numbers of layers and initial learning rate

in RNNs accuracy. In general, increasing the number of layers or using dropout of 0.5 did

not lead to better accuracy. The model sizes varied in the same way as the experiments

with 5 second time windows as they cannot be influenced by this variable.

Figure 6.9: RNNs accuracy obtained for multiple hyperparameter configurations, using 1
second time windows.

Figure 6.14 presents the average train and test confusion matrices of the best perform-

ing RNN configuration, respectively, with 2 hidden layers, no dropout and initial learning

rate of 0.01. The models built with this configuration were able to learn the patterns of

the five travel modes present in the evaluation dataset, as can be observed on the training

set confusion matrices. However, when analyzing the test matrices, it can concluded that

the Bus and Walking patterns presented better generalization than the ones of Still, Car

and Train modes, although the true positive rate for these classes was above 70%.

In addition to the previous results, Figures 6.10 illustrate the impact of different num-

bers of layers and initial learning rate in (D)FNNs accuracy and model size, respectively.

Also, the variation of accuracy and model size when using ReLu or Leaky-ReLu as hidden

layer activation function can be observed.

For FNNs, the best performance was reached when using 1 hidden layer, ReLu hidden

activation and initial learning rate of 0.1, while for DFNNs the best performance was

100

Figure 6.10: (D)FNNs accuracy obtained for multiple hyperparameter configurations, us-
ing 1 second time windows.

reached with 2 hidden layer, ReLu hidden activation and initial learning rate of 0.1. The

average training and testing confusion matrices of the best performing FNNs and DFNNs

configurations are presented in Figure 6.14 also.

6.4.3.3 Ten Second Time Windows

In Table 6.5 we observe that the only models that reached an average accuracy equal

or higher than 90% when using the 10 second time windows were the ones generated by

AutoML, DT, RF and KNN. From these, only AutoML, RF and KNN obtained an average

precision, recall, f1-score and kappa coefficient equal or higher than 90% .

Table 6.5: Average accuracy (A), precision (P), recall (R), F1-score (F1) , kappa coeffi-
cient (Kappa) and model size (Size) per-fold obtained by the best configurations of each
ML algorithm tested using 10 second time windows.

ML Alg. A(%) P(%) R(%) F1(%) Kappa(%) Size
AutoML 96 95 95 95 95 62.5 MB
NB 47 39 51 40 36 10.5 KB
AB 78 73 77 73 71 69.6 KB
SVM 88 85 84 84 84 4.6 MB
DT 91 87 88 88 88 131.1 KB
RF 96 94 94 94 94 1.8 MB
KNN 94 90 93 91 92 20.5 MB
FNN 82 82 82 82 77 114.0 KB
DFNN 82 82 82 82 77 104.3 KB
LR 84 79 83 80 80 5.8 KB
RNN 89 89 89 89 86 273.8 KB

With respect to the model size, the lowest average size reported was from the LR

models again, but , surprisingly, these were not the worst performing models with respect

to classification accuracy in this configuration, reaching an average of 84%. Nonetheless,

the focus of this analysis will be on the comparison of the average model size of the

models with highest average accuracy: AutoML, RF, DT and KNN.

The average model size for the AutoML models was around 60MB, which might

represent a better trade-off when compared to AutoML generated models for 1 and 5

second time windows. When considering the KNN models and RF models, the average

101

size drops to 20.5MB and 1.8MB, respectively, which still considerably large, but much

more suitable for smartphones. The DT models were the ones that presented the best

trade-off in these experiments with average 91% accuracy and 131.1KB model size.

Nonetheless, the best performing RNN models also presented a good trade-off be-

tween classification accuracy and model size, reaching average 89% accuracy with aver-

age model size below 300KB. Figure 6.11 illustrate the impact of different numbers of

layers and initial learning rate in RNNs accuracy and model size, respectively. Also, the

variation of accuracy and model size when using dropout of 0.5 or no dropout can be ob-

served. In general, increasing the number of layers or using dropout of 0.5 did not lead to

better accuracy. The model sizes varied in the same way as the experiments with 5 second

time windows as they cannot be influenced by this variable.

Figure 6.11: RNNs accuracy obtained for multiple hyperparameter configurations, using
10 second time windows.

Figure 6.14 presents the average train and test confusion matrices of the best perform-

ing RNN configuration, respectively, with 2 hidden layers, no dropout and initial learning

rate of 0.01. The models built with this configuration were able to learn the patterns of

the five travel modes present in the evaluation dataset very well, as can be observed on the

training set confusion matrices. However, when analyzing the test matrices, it can con-

cluded that the Still and Walking patterns presented better generalization than the ones

of Car, Train and Bus modes, although the true positive rate for these classes was above

80%.

In addition to the previous results, Figure 6.12 illustrate the impact of different num-

bers of layers and initial learning rate in (D)FNNs accuracy, respectively. Also, the varia-

tion of accuracy when using ReLu or Leaky-ReLu as hidden layer activation function can

be observed.

For FNNs, the best performance was reached when using 1 hidden layer, Leaky ReLu

hidden activation and initial learning rate of 0.1, while for DFNNs the best performance

was reached with 2 hidden layer, Leaky ReLu hidden activation and initial learning rate

102

Figure 6.12: (D)FNNs accuracy obtained for multiple hyperparameter configurations, us-
ing 10 second time windows.

of 0.1. The average training and testing confusion matrices of the best performing FNNs

and DFNNs configurations are presented in Figure 6.14 also.

6.4.3.4 Summary and Discussion

In this section, a summary and discussion of the performance evaluation results is

provided. In Figure 6.13 the average accuracy and model size of the best performing

configurations of each ML technique for each window size are presented.

(a) (b)

Figure 6.13: Accuracy and model size of best performing configurations of each ML
technique for each window size.

With respect to classification accuracy, AutoML consistently presents superior per-

formance across 1, 5 and 10 window size experiments. However, it also presents the

largest model sizes across all experiments with its largest model consuming about 200

times more memory than the largest RNN models, which indicates that the later might

be more indicated for in-device processing. The RF models consistently presented good

results as well, with accuracy varying from 91% to 96% and model size varying from

26MB to 1.8MB. This means, however, that the largest RF model consumed on average

85 more memory than the largest RNN model, which also indicates that RNNs present an

advantageous trade-off when compared to RFs.

103

The models generated with DT presented the best trade-off between classification

accuracy and model size, which varied from 87% to 91% and 1.1MB to 131.1KB, respec-

tively. When comparing these models the ones generated with RNNs, whose classification

accuracy and model size varied from 77% to 90% and 314.5KB to 273.8KB, respectively,

one might think that these could be more suited for in-device real-time travel mode de-

tection. But when the computational complexities and the precision, recall, f1-score and

kappa coefficient of the best performing configurations of both models are taken in con-

sideration, RNNs have an advantage.

The models generated with FNNs and DFNNs presented modest performance, with

average classification accuracy between 70% and 80%, when using 1 and 5 window sizes,

but achieved great results, with average classification accuracy of around 90% when using

10 second time windows. Their lowest and largest model sizes were 99KB and 122.5KB,

respectively. Models generated with AB presented similar results for 1 and 5 second

window sizes but their performance did not increase substantially when using 10 second

windows.

The worst performing models for 1 second windows, were the ones generated by

SVM, LR and NB. When using 5 second windows, NB and LR obtained similar perfor-

mance, but SVM presented a significant improvement. For 10 second windows however,

both SVM and LR presented accuracy above 80%, which results in a huge gap between

their performances with 1 and 10 second windows. In the case of LR, this can be explained

by the fact that the models generated by these technique are incapable of capturing non-

linear relationships between the input features, and larger window sizes can lead to more

linear relationships.

The models generated with KNN also presented good results, with accuracy varying

from 85% to 94% and model size varying from 20MB to more than 200MB. The main

disadvantage of this technique, however, was the large model sizes it presented when

compared to DT and RNN. Therefore, the results indicate that most of the models achieve

decent performance with 10 second window sizes and although AutoML and RF achieve

the highest accuracy, precision, recall, f1-score and kappa coefficient across all scenarios,

DT and RNN present a better trade-off between classification performance and model

size. Also, RNN have reached the best performance when using 5 second time windows,

with 90% accuracy and model size of 314.5KB.

In order to evaluate how the samples of user one (U1), which was discarded from the

experiments by the reasons stated in Subsection 6.4.1, could influence detection perfor-

mance, we have executed an additional cross-validation experiment using the best per-

104

forming RNN configuration and a dataset containing all samples of U1. The average train

and test configurations obtained in this experiment are presented in Figure 6.14.

It can be observed that the performance dropped considerably for all travel modes

during training, with the exception of car and walking, which maintained an true positive

rate above 90%. The same pattern can be observed in the test confusion matrix, although

the model did not reach a 90% true positive rate in any of the travel mode classes. This

indicates that U1 samples did not contribute for improving the model performance nei-

ther in training or testing and they should, therefore, be discarded from the evaluation

experiments.

6.5 Conclusion

In this chapter, the problems of offline and online travel mode detection are addressed.

These are relevant to many context-aware applications in smart cities. These applications

include ITS, health care monitoring, location-based services and others. This work pro-

posed TMDFramework and TMD-LSTM, that uses RNNs to learn travel mode patterns

through multiple sensing modalities, and evaluated its online detection capabilities using

a public benchmark dataset. The experimental results obtained indicate that the method

proposed is capable of detecting modes with up to 90% accuracy and a lower memory

consumption and computational cost than other ML approaches with comparable perfor-

mance.

105

(a) RNN 5s Training (b) RNN 5s Testing (c) RNN 5s Training
with U1

(d) RNN 5s Testing
with U1

(e) FNN 5s Training (f) FNN 5s Testing (g) DFNN 5s Training (h) DFNN 5s Testing

(i) RNN 1s Training (j) RNN 1s Testing (k) FNN 1s Training (l) FNN 1s Testing

(m) DFNN 1s Training (n) DFNN 1s Testing (o) RNN 10s Training (p) RNN 10s Testing

(q) FNN 10s Training (r) FNN 10s Testing (s) DFNN 10s Training (t) DFNN 10s Testing

Figure 6.14: Average training and testing confusion matrices per-fold of best performing
neural network configurations with 5, 1 and 10 second time windows. Predicted labels
are represented as columns and true labels are represented as rows.

106

7. Conclusions and Future Work

In this chapter, the main conclusions of this work are summarized as well as the next

steps to be taken for future research. This work has addressed four instances of the prob-

lem of real-time travel mode detection:

• Real-Time Travel Mode Detection with Location Sensors - Chapter 3.

• Real-Time Travel Mode and Trip Purpose Prediction with Location Sensor - Chap-

ter 4.

• Real-Time Travel Mode Detection using Multiple Smartphone Sensors - Chapter 5.

• Real-Time Travel Mode Detection with Recurrent Neural Networks - Chapter 6.

In Chapter 3, a technique that allows detecting the travel mode of smartphone users,

in real time, was proposed and evaluated. This technique was implemented on a proto-

type Android application, named CityTracks-RT, that used supervised machine learning

models, built with the Weka API in Java. The performance of the prototype was evaluated

through the analysis of quantitative metrics obtained via field tests with 37 volunteers in

Rio de Janeiro and the results indicate that the proposed technique is capable of detecting

the travel modes of smartphone users in urban centers.

In Chapter 4 a hybrid solution for real-time travel mode detection and trip purpose

prediction was proposed. This solution uses a single preprocessing algorithm to extract

features that are used to train classification models through supervised ML algorithms.

Its performance was evaluated through the analysis of quantitative metrics obtained via

k-fold cross-validation. The maximum accuracy reached for travel mode detection and

trip purpose prediction was 88% and 81%, respectively. Therefore, it can be concluded

that the proposed solution is capable of detecting the travel mode and predict the trip

purpose of a trip using only 60 seconds of smartphone collected location data, allowing

107

context-aware information systems to use this contextual information to provide person-

alized services and better predict user behaviour with respect to mobility patterns and

transportation preferences.

In Chapter 5 the use of AutoML and feature engineering techniques to enhance travel

mode detection with multiple sensors is proposed. The evaluation experiments showed

that these methods can greatly improve classification accuracy, reaching a maximum of

97% accuracy, precision, recall and f-measure on the TMD Dataset using the AutoSklearn

Global Optimization framework. This is the first work to present evidence that AutoML

frameworks can outperform human researchers in the combined algorithm selection and

hyperparameter optimization of ML classifiers for the travel mode detection problem.

Finally, in Chapter 6, TMDFramework and TMD-LSTM are proposed. TMD-LSTM

uses RNNs to learn travel mode patterns through multiple sensing modalities, and its

online detection capabilities are evaluated using a public benchmark dataset. The experi-

mental results obtained indicate that the method proposed is capable of detecting modes

with up to 90% accuracy and a lower memory consumption and computational cost than

other ML approaches with comparable performance.

As future research the reproduction of the evaluation experiments using iOS devices,

in order to assess the difference in detection performance obtained through these and the

Android devices, can be considered. Additionally, the implementation of all the compo-

nents of the generic framework proposed in chapter 6 is needed. Finally, further evaluation

experiments with RNNs and other deep learning techniques can be considered, combining

handcrafted features and raw data as input for training and predictions.

108

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:

a system for large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

[2] Shigeo Abe. Support Vector Machines for Pattern Classification. Springer Publishing

Company, Incorporated, 2nd edition, 2012.

[3] Ethem Alpaydin. Introduction to machine learning. MIT press, 2014.

[4] N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric regres-

sion. The American Statistician, 46(3):175–185, 1992.

[5] Naomi S Altman. An introduction to kernel and nearest-neighbor nonparametric re-

gression. The American Statistician, 46(3):175–185, 1992.

[6] Per Kragh Andersen and Richard David Gill. Cox’s regression model for counting

processes: a large sample study. The annals of statistics, pages 1100–1120, 1982.

[7] Ron Artstein and Massimo Poesio. Inter-coder agreement for computational linguis-

tics. Computational Linguistics, 34(4):555–596, 2008.

[8] Behrang Assemi, Hamid Safi, Mahmoud Mesbah, and Luis Ferreira. Developing and

validating a statistical model for travel mode identification on smartphones. IEEE

Transactions on Intelligent Transportation Systems, 17(7):1920–1931, 2016.

[9] Jiawei Bai, Jeff Goldsmith, Brian Caffo, Thomas A. Glass, and Ciprian M.

Crainiceanu. Movelets: A dictionary of movement. Electronic Journal of Statistics,

6:559–578, 2012.

[10] Thanos Bantis and James Haworth. Who you are is how you travel: A framework

for transportation mode detection using individual and environmental characteristics.

Transportation Research Part C: Emerging Technologies, 80:286–309, 2017.

110

[11] Tooba Batool, Yves Vanrompay, An Neven, Davy Janssens, and Geerts Wets. Ctass:

a framework for contextualized travel behavior advice to cardiac patients. Procedia

Computer Science, 113:303–309, 2017.

[12] L. Bedogni, M. Di Felice, and L. Bononi. By train or by car? detecting the user’s

motion type through smartphone sensors data. In 2012 IFIP Wireless Days, pages

1–6, Nov 2012.

[13] Luca Bedogni, Marco Di Felice, and Luciano Bononi. Context aware android appli-

cations through transportation mode detection techniques. Wireless Communications

and Mobile Computing, 16(16), 2016.

[14] Yoshua Bengio et al. Learning deep architectures for ai. Foundations and trends®

in Machine Learning, 2(1):1–127, 2009.

[15] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms

for hyper-parameter optimization. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,

F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information Processing

Systems 24, pages 2546–2554. Curran Associates, Inc., 2011.

[16] R Bertolami, H Bunke, S Fernandez, A Graves, M Liwicki, and J Schmidhuber.

A novel connectionist system for improved unconstrained handwriting recognition.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5), 2009.

[17] J Martin Bland and Douglas G Altman. Statistics notes: measurement error. Bmj,

312(7047):1654, 1996.

[18] Dankmar Böhning. Multinomial logistic regression algorithm. Annals of the Insti-

tute of Statistical Mathematics, 44(1):197–200, 1992.

[19] Wendy Bohte and Kees Maat. Deriving and validating trip purposes and travel

modes for multi-day gps-based travel surveys: A large-scale application in the nether-

lands. Transportation Research Part C: Emerging Technologies, 17(3):285–297,

2009.

[20] Jean-Yves Le Boudec. Performance Evaluation of Computer and Communication

Systems. EFPL Press, 2011.

[21] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001.

[22] E Oran Brigham and E Oran Brigham. The fast Fourier transform and its applica-

tions, volume 448. prentice Hall Englewood Cliffs, NJ, 1988.

111

[23] S Allen Broughton and Kurt Bryan. Discrete Fourier analysis and wavelets: appli-

cations to signal and image processing. John Wiley & Sons, 2018.

[24] A. Bujari, B. Licar, and C. E. Palazzi. Movement pattern recognition through smart-

phone’s accelerometer. In 2012 IEEE Consumer Communications and Networking

Conference (CCNC), pages 502–506, Jan 2012.

[25] Francesco Calabrese, Laura Ferrari, and Vincent D. Blondel. Urban sensing using

mobile phone network data: A survey of research. ACM Computing Survey, 47(2):1–

20, 2014.

[26] Claudia Carpineti, Vincenzo Lomonaco, Luca Bedogni, Marco Di Felice, and Lu-

ciano Bononi. Custom dual transportation mode detection by smartphone devices

exploiting sensor diversity. In 2018 IEEE International Conference on Pervasive

Computing and Communications Workshops (PerCom Workshops), pages 367–372.

IEEE, 2018.

[27] Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes. Ensemble

selection from libraries of models. In Proceedings of the Twenty-first International

Conference on Machine Learning, ICML ’04, pages 18–, New York, NY, USA, 2004.

ACM.

[28] Ke-Yu Chen, Rahul C. Shah, Jonathan Huang, and Lama Nachman. Mago: Mode

of transport inference using the hall-effect magnetic sensor and accelerometer. Proc.

ACM Interact. Mob. Wearable Ubiquitous Technol., 1(2):8:1–8:23, June 2017.

[29] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In

Proceedings of the 22nd acm sigkdd international conference on knowledge discovery

and data mining, pages 785–794. ACM, 2016.

[30] Dongkeun Cho, Howon Kim, et al. Stateful lstm for classification on/off event of

household appliances. Proceedings of the Korean Institute of Communication Sci-

ences Conference, pages 15–16, 2018.

[31] Jacob Cohen. A coefficient of agreement for nominal scales. Educational and

psychological measurement, 20(1):37–46, 1960.

[32] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn.,

20(3):273–297, September 1995.

[33] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley

& Sons, 2012.

112

[34] Sina Dabiri and Kevin Heaslip. Inferring transportation modes from gps trajectories

using a convolutional neural network. Transportation Research Part C: Emerging

Technologies, 86:360–371, 2018.

[35] Pedro Domingos. A few useful things to know about machine learning. Commun.

ACM, 55(10):78–87, October 2012.

[36] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for

online learning and stochastic optimization. Journal of Machine Learning Research,

12(Jul):2121–2159, 2011.

[37] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification (2Nd

Edition). Wiley-Interscience, 2000.

[38] Yuki Endo, Hiroyuki Toda, Kyosuke Nishida, and Akihisa Kawanobe. Deep fea-

ture extraction from trajectories for transportation mode estimation. In Pacific-Asia

Conference on Knowledge Discovery and Data Mining, pages 54–66. Springer, 2016.

[39] Alireza Ermagun, Yingling Fan, Julian Wolfson, Gediminas Adomavicius, and Kirti

Das. Real-time trip purpose prediction using online location-based search and discov-

ery services. Transportation Research Part C: Emerging Technologies, 77:96–112,

2017.

[40] Kelly R Evenson and Robert D Furberg. Moves app: a digital diary to track physical

activity and location. Br J Sports Med, 51(15):1169–1170, 2017.

[41] BS Everitt and A Skrondal. The cambridge dictionary of statistics. Cambridge,

Cambridge, 2002.

[42] Shih-Hau Fang, Yu-Xaing Fei, Zhezhuang Xu, and Yu Tsao. Learning transporta-

tion modes from smartphone sensors based on deep neural network. IEEE Sensors

Journal, 17(18):6111–6118, 2017.

[43] Shih-Hau Fang, Hao-Hsiang Liao, Yu-Xiang Fei, Kai-Hsiang Chen, Jen-Wei Huang,

Yu-Ding Lu, and Yu Tsao. Transportation modes classification using sensors on

smartphones. Sensors, 16(8):1324, 2016.

[44] Tom Fawcett. An introduction to roc analysis. Pattern Recognition Letters,

27(8):861 – 874, 2006. ROC Analysis in Pattern Recognition.

[45] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. The kdd process

for extracting useful knowledge from volumes of data. Communications of the ACM,

39(11):27–34, 1996.

113

[46] Santiago Fernández, Alex Graves, and Jürgen Schmidhuber. Sequence labelling in

structured domains with hierarchical recurrent neural networks. In Proceedings of the

20th International Joint Conference on Artificial Intelligence, IJCAI 2007, 2007.

[47] Denzil Ferreira, Vassilis Kostakos, and Anind K Dey. Aware: mobile context instru-

mentation framework. Frontiers in ICT, 2:6, 2015.

[48] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel

Blum, and Frank Hutter. Efficient and robust automated machine learning. In

C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Ad-

vances in Neural Information Processing Systems 28, pages 2962–2970. Curran As-

sociates, Inc., 2015.

[49] David Heaver Fremlin. Measure theory, volume 4. Torres Fremlin, 2000.

[50] Yoav Freund, Robert Schapire, and Naoki Abe. A short introduction to boosting.

Journal-Japanese Society For Artificial Intelligence, 14(771-780):1612, 1999.

[51] Jerome H Friedman. Greedy function approximation: a gradient boosting machine.

Annals of statistics, pages 1189–1232, 2001.

[52] Nir Friedman, Dan Geiger, Moises Goldszmidt, G. Provan, P. Langley, and P. Smyth.

Bayesian network classifiers. In Machine Learning, pages 131–163, 1997.

[53] Keinosuke Fukunaga. Introduction to statistical pattern recognition. Academic

press, 2013.

[54] Erich Gamma. Design patterns: elements of reusable object-oriented software.

Pearson Education India, 1995.

[55] Felix A Gers, Nicol N Schraudolph, and Jürgen Schmidhuber. Learning precise tim-

ing with lstm recurrent networks. Journal of machine learning research, 3(Aug):115–

143, 2002.

[56] Karst T Geurs, Tom Thomas, Marcel Bijlsma, and Salima Douhou. Automatic trip

and mode detection with move smarter: First results from the dutch mobile mobility

panel. Transportation research procedia, 11:247–262, 2015.

[57] Rudolf Giffinger and Nataša Pichler-Milanović. Smart cities: Ranking of European

medium-sized cities. Centre of Regional Science, Vienna University of Technology,

2007.

114

[58] Pall Oskar Gislason, Jon Atli Benediktsson, and Johannes R Sveinsson. Random

forests for land cover classification. Pattern Recognition Letters, 27(4):294–300,

2006.

[59] Lei Gong, Ryo Kanamori, and Toshiyuki Yamamoto. Data selection in machine

learning for identifying trip purposes and travel modes from longitudinal gps data

collection lasting for seasons. Travel Behaviour and Society, 2017.

[60] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learn-

ing, volume 1. MIT press Cambridge, 2016.

[61] Ben Goodrich and Itamar Arel. Unsupervised neuron selection for mitigating catas-

trophic forgetting in neural networks. In 2014 IEEE 57th International Midwest Sym-

posium on Circuits and Systems (MWSCAS), pages 997–1000. IEEE, 2014.

[62] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Con-

nectionist temporal classification: labelling unsegmented sequence data with recur-

rent neural networks. In Proceedings of the 23rd international conference on Machine

learning, pages 369–376. ACM, 2006.

[63] Damodar N Gujarati. Basic econometrics. Tata McGraw-Hill Education, 2009.

[64] Isabelle Guyon, Kristin Bennett, Gavin Cawley, Hugo Jair Escalante, Sergio Es-

calera, Tin Kam Ho, Núria Macia, Bisakha Ray, Mehreen Saeed, Alexander Stat-

nikov, et al. Design of the 2015 chalearn automl challenge. In Neural Networks

(IJCNN), 2015 International Joint Conference on, pages 1–8. IEEE, 2015.

[65] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-

putation, 9(8):1735–1780, 1997.

[66] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. Applied logistic

regression, volume 398. John Wiley & Sons, 2013.

[67] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based

optimization for general algorithm configuration. In Carlos A. Coello Coello, edi-

tor, Learning and Intelligent Optimization, pages 507–523, Berlin, Heidelberg, 2011.

Springer Berlin Heidelberg.

[68] Harold R Jacobs. Mathematics: A human endeavor. Macmillan, 1994.

[69] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction

to statistical learning, volume 112. Springer, 2013.

115

[70] Xiang Jiang, Erico N de Souza, Ahmad Pesaranghader, Baifan Hu, Daniel L Sil-

ver, and Stan Matwin. Trajectorynet: An embedded gps trajectory representa-

tion for point-based classification using recurrent neural networks. arXiv preprint

arXiv:1705.02636, 2017.

[71] Sanem Kabadayi, Adam Pridgen, and Christine Julien. Virtual sensors: Abstracting

data from physical sensors. In Proceedings of the 2006 International Symposium

on on World of Wireless, Mobile and Multimedia Networks, pages 587–592. IEEE

Computer Society, 2006.

[72] D Kinga and J Ba Adam. A method for stochastic optimization. In International

Conference on Learning Representations (ICLR), 2015.

[73] Ron Kohavi. The power of decision tables. In Nada Lavrac and Stefan Wrobel,

editors, Machine Learning: ECML-95, pages 174–189, Berlin, Heidelberg, 1995.

Springer Berlin Heidelberg.

[74] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and

model selection. In Proceedings of the 14th International Joint Conference on Artifi-

cial Intelligence - Volume 2, IJCAI’95, pages 1137–1143, San Francisco, CA, USA,

1995. Morgan Kaufmann Publishers Inc.

[75] Brent Komer, James Bergstra, and Chris Eliasmith. Hyperopt-sklearn: automatic

hyperparameter configuration for scikit-learn. In ICML workshop on AutoML, 2014.

[76] Lars Kotthoff, Chris Thornton, Holger H Hoos, Frank Hutter, and Kevin Leyton-

Brown. Auto-weka 2.0: Automatic model selection and hyperparameter optimization

in weka. Journal of Machine Learning Research, 17:1–5, 2016.

[77] Glenn E Krasner, Stephen T Pope, et al. A description of the model-view-controller

user interface paradigm in the smalltalk-80 system. Journal of object oriented pro-

gramming, 1(3):26–49, 1988.

[78] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell. A

survey of mobile phone sensing. IEEE Communications Magazine, 48(9):140–150,

Sept 2010.

[79] Zahra Ansari Lari and Amir Golroo. Automated transportation mode detection us-

ing smart phone applications via machine learning: Case study mega city of tehran.

In Proceedings of the Transportation Research Board 94th Annual Meeting, Wash-

ington, DC, USA, pages 11–15, 2015.

116

[80] Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize

recurrent networks of rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

[81] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech,

and time series. The handbook of brain theory and neural networks, 3361(10):1995,

1995.

[82] YW Lee, TP Cheatham, and JB Wiesner. Application of correlation analysis to the

detection of periodic signals in noise. Proceedings of the IRE, 38(10):1165–1171,

1950.

[83] Xiaoyuan Liang and Guiling Wang. A convolutional neural network for transporta-

tion mode detection based on smartphone platform. In 2017 IEEE 14th International

Conference on Mobile Ad Hoc and Sensor Systems (MASS), pages 338–342. IEEE,

2017.

[84] Ziheng Lin, Mogeng Yin, Sidney Feygin, Madeleine Sheehan, Jean-Francois

Paiement, and Alexei Pozdnoukhov. Deep generative models of urban mobility. IEEE

Transactions on Intelligent Transportation Systems, 2017.

[85] Huan Liu and Hiroshi Motoda. Feature Selection for Knowledge Discovery and

Data Mining. Kluwer Academic Publishers, Norwell, MA, USA, 1998.

[86] Michel Loève. Probability theory: foundations, random sequences. van Nostrand

Princeton, NJ, 1955.

[87] Gilles Louppe. Understanding random forests: From theory to practice. arXiv

preprint arXiv:1407.7502, 2014.

[88] Nelmarie Louw and SJ Steel. Variable selection in kernel fisher discriminant anal-

ysis by means of recursive feature elimination. Computational Statistics & Data

Analysis, 51(3):2043–2055, 2006.

[89] Heikki Mäenpää, Andrei Lobov, and Jose L Martinez Lastra. Travel mode estima-

tion for multi-modal journey planner. Transportation Research Part C: Emerging

Technologies, 82:273–289, 2017.

[90] Bryan D Martin, Vittorio Addona, Julian Wolfson, Gediminas Adomavicius, and

Yingling Fan. Methods for real-time prediction of the mode of travel using

smartphone-based gps and accelerometer data. Sensors, 17(9):2058, 2017.

117

[91] Bryan D Martin, Vittorio Addona, Julian Wolfson, Gediminas Adomavicius, and

Yingling Fan. Methods for real-time prediction of the mode of travel using

smartphone-based gps and accelerometer data. Sensors, 17(9):2058, 2017.

[92] Chuishi Meng, Yu Cui, Qing He, Lu Su, and Jing Gao. Travel purpose inference

with gps trajectories, pois, and geo-tagged social media data. In Big Data (Big Data),

2017 IEEE International Conference on, pages 1319–1324. IEEE, 2017.

[93] Leandro L Minku, Allan P White, and Xin Yao. The impact of diversity on online

ensemble learning in the presence of concept drift. IEEE Transactions on knowledge

and Data Engineering, 22(5):730–742, 2010.

[94] Lara Montini, Sebastian Prost, Johann Schrammel, Nadine Rieser-Schüssler, and

Kay W Axhausen. Comparison of travel diaries generated from smartphone data and

dedicated gps devices. Transportation Research Procedia, 11:227–241, 2015.

[95] Lara Montini, Nadine Rieser-Schüssler, and Kay W Axhausen. Personalisation in

multi-day gps and accelerometer data processing. In 14th Swiss Transport Research

Conference (STRC), 2014.

[96] Lara Montini, Nadine Rieser-Schüssler, Andreas Horni, and Kay Axhausen. Trip

purpose identification from gps tracks. Transportation Research Record: Journal of

the Transportation Research Board, pages 16–23, 2014.

[97] Kevin P Murphy. Naive bayes classifiers. University of British Columbia, 18, 2006.

[98] Daisik Nam, Hyunmyung Kim, Jaewoo Cho, and R Jayakrishnan. A model based on

deep learning for predicting travel mode choice. In Proceedings of the Transportation

Research Board 96th Annual Meeting Transportation Research Board, Washington,

DC, USA, pages 8–12, 2017.

[99] John Ashworth Nelder and R Jacob Baker. Generalized linear models. Wiley Online

Library, 1972.

[100] Philippe Nitsche, Peter Widhalm, Simon Breuss, Norbert Brändle, and Peter Mau-

rer. Supporting large-scale travel surveys with smartphones–a practical approach.

Transportation Research Part C: Emerging Technologies, 43:212–221, 2014.

[101] Clifton Nock. Data access patterns: database interactions in object-oriented ap-

plications. Addison-Wesley Boston, 2004.

[102] Bob O’hara and Al Petrick. IEEE 802.11 handbook: a designer’s companion.

IEEE Standards Association, 2005.

118

[103] Judy Pearsall and Patrick Hanks. The new Oxford dictionary of English. Clarendon

Press, 1998.

[104] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent

Dubourg, et al. Scikit-learn: Machine learning in python. Journal of machine learn-

ing research, 12(Oct):2825–2830, 2011.

[105] David Martin Powers. Evaluation: from precision, recall and f-measure to roc, in-

formedness, markedness and correlation. Journal of Machine Learning Technologies,

2011.

[106] Adrian C. Prelipcean, Gyözö Gidófalvi, and Yusak O. Susilo. Transportation mode

detection – an in-depth review of applicability and reliability. Transport Reviews,

37(4):442–464, 2017.

[107] C. A. de M. S. Quintella, Leila C.V. Andrade, and Carlos Alberto v. Campos. De-

tecting the transportation mode for context-aware systems using smartphones. In

IEEE Intelligent Transportation Systems (ITSC), 2016.

[108] Carlos Alvaro de M. S. Quintella. Aplicação de aprendizado de máquina para

inferência de modo de transporte em traces de smartphones, 2013.

[109] Lawrence R Rabiner and Bernard Gold. Theory and application of digital signal

processing. Englewood Cliffs, NJ, Prentice-Hall, 777 p., 1975.

[110] Tim Rentsch. Object oriented programming. ACM Sigplan Notices, 17(9):51–57,

1982.

[111] Dennis W Ruck, Steven K Rogers, Matthew Kabrisky, Mark E Oxley, and Bruce W

Suter. The multilayer perceptron as an approximation to a bayes optimal discriminant

function. IEEE Transactions on Neural Networks, 1(4):296–298, 1990.

[112] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach.

Malaysia; Pearson Education Limited„ 2016.

[113] David Saad. On-line learning in neural networks, volume 17. Cambridge Univer-

sity Press, 2009.

[114] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory

recurrent neural network architectures for large scale acoustic modeling. In Fifteenth

annual conference of the international speech communication association, 2014.

119

[115] Hojjat Salehinejad, Julianne Baarbe, Sharan Sankar, Joseph Barfett, Errol Colak,

and Shahrokh Valaee. Recent advances in recurrent neural networks. arXiv preprint

arXiv:1801.01078, 2017.

[116] Hojjat Salehinejad, Shahrokh Valaee, Tim Dowdell, and Joseph Barfett. Image

augmentation using radial transform for training deep neural networks. In IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing, Calgary, Alberta,

Canada, 2018.

[117] Johannes Schobel, Rüdiger Pryss, Winfried Schlee, Thomas Probst, Dominic Geb-

hardt, Marc Schickler, and Manfred Reichert. Development of mobile data collection

applications by domain experts: Experimental results from a usability study. In In-

ternational Conference on Advanced Information Systems Engineering, pages 60–75.

Springer, 2017.

[118] Johannes Schobel, Marc Schickler, Rüdiger Pryss, and Manfred Reichert. Process-

driven data collection with smart mobile devices. In International Conference on Web

Information Systems and Technologies, pages 347–362. Springer, 2014.

[119] Johann Schrammel, Marc Busch, and Manfred Tscheligi. Peacox-persuasive advi-

sor for co2-reducing cross-modal trip planning. In PERSUASIVE (Adjunct Proceed-

ings), 2013.

[120] Toru Seo, Takahiko Kusakabe, Hiroto Gotoh, and Yasuo Asakura. Interactive on-

line machine learning approach for activity-travel survey. Transportation Research

Part B: Methodological, 2017.

[121] Muhammad Awais Shafique and Eiji Hato. Travel mode detection with varying

smartphone data collection frequencies. Sensors, 16(5), 2016.

[122] Li Shen and Peter R Stopher. Review of gps travel survey and gps data-processing

methods. Transport Reviews, 34(3):316–334, 2014.

[123] Roger W Sinnott. Virtues of the haversine. Sky Telescope, 68, Issue 2:159, 1984.

[124] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimiza-

tion of machine learning algorithms. In F. Pereira, C. J. C. Burges, L. Bottou, and

K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25,

pages 2951–2959. Curran Associates, Inc., 2012.

[125] Elton F. de S. Soares, Carlos Alvaro de M. S. Quintella, and Carlos Alberto V. Cam-

pos. Citytracks-rt: Uma aplicação para detecção do modo de transporte em tempo real

120

nos centros urbanos. Simpósio Brasileiro de Sistemas de Informação (SBSI 2017),

2017.

[126] Elton F. de S. Soares, Carlos Alvaro de M. S. Quintella, and Carlos Alberto V.

Campos. Towards an application for real-time travel mode detection in urban centers.

IEEE Vehicular Technology Conference, 2017.

[127] Elton F. de S. Soares, Kate Revoredo, Carlos Alvaro de M. S. Quintella, Carlos

Alberto V. Campos, and Fernanda Baião. A hybrid solution for real-time travel mode

detection and trip purpose prediction. IEEE Transactions on Intelligent Transporta-

tion Systems, 2019.

[128] Xuan Song, Hiroshi Kanasugi, and Ryosuke Shibasaki. Deeptransport: Prediction

and simulation of human mobility and transportation mode at a citywide level. In

IJCAI, pages 2618–2624, 2016.

[129] Peter R Stopher, Qingjian Jiang, Camden FitzGerald, et al. Processing gps data

from travel surveys. 2nd international colloqium on the behavioural foundations of

integrated land-use and transportation models: frameworks, models and applica-

tions, Toronto, 2005.

[130] Ruslan L Stratonovich. Conditional Markov processes and their application to the

theory of optimal control. American Elsevier, 1968.

[131] Xing Su, Hernan Caceres, Hanghang Tong, and Qing He. Online travel mode iden-

tification using smartphones with battery saving considerations. IEEE Transactions

on Intelligent Transport. Systems, 17(10), 2016.

[132] Christian Szegedy, Alexander Toshev, and Dumitru Erhan. Deep neural networks

for object detection. In Advances in neural information processing systems, pages

2553–2561, 2013.

[133] Pang-Ning Tan et al. Introduction to data mining. Pearson Education India, 2007.

[134] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-

weka: Combined selection and hyperparameter optimization of classification algo-

rithms. In Proceedings of the 19th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’13, pages 847–855, New York, NY,

USA, 2013. ACM.

[135] Philip J Troped, Marcelo S Oliveira, Charles E Matthews, Ellen K Cromley,

Steven J Melly, and Bruce A Craig. Prediction of activity mode with global posi-

121

tioning system and accelerometer data. Medicine and science in sports and exercise,

40(5):972–978, 2008.

[136] Madeleine Udell, Corinne Horn, Reza Zadeh, Stephen Boyd, et al. Generalized

low rank models. Foundations and Trends® in Machine Learning, 9(1):1–118, 2016.

[137] Graham Upton and Ian Cook. Understanding statistics. Oxford University Press,

1996.

[138] Toan H Vu, Le Dung, and Jia-Ching Wang. Transportation mode detection on

mobile devices using recurrent nets. In Proceedings of the 2016 ACM on Multimedia

Conference, pages 392–396. ACM, 2016.

[139] Bao Wang, Linjie Gao, and Zhicai Juan. Travel mode detection using gps data and

socioeconomic attributes based on a random forest classifier. IEEE Transactions on

Intelligent Transportation Systems, 2017.

[140] Hao Wang, GaoJun Liu, Jianyong Duan, and Lei Zhang. Detecting transporta-

tion modes using deep neural network. IEICE TRANSACTIONS on Information and

Systems, 100(5):1132–1135, 2017.

[141] Chieh-Hua Wen and Frank S Koppelman. The generalized nested logit model.

Transportation Research Part B: Methodological, 35(7):627–641, 2001.

[142] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Machine

Learning Tools and Techniques. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 3rd edition, 2011.

[143] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.

Chemometrics and Intelligent Laboratory Systems, 2(1):37 – 52, 1987. Proceedings

of the Multivariate Statistical Workshop for Geologists and Geochemists.

[144] David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

[145] George Woodbury. An introduction to statistics. Cengage Learning, 2001.

[146] Linlin Wu, Biao Yang, and Peng Jing. Travel mode detection based on gps raw

data collected by smartphones: a systematic review of the existing methodologies.

Information, 7(4):67, 2016.

[147] Guangnian Xiao, Zhicai Juan, and Chunqin Zhang. Travel mode detection based on

gps track data and bayesian networks. Computers, Environment and Urban Systems,

54:14–22, 2015.

122

[148] Guangnian Xiao, Zhicai Juan, and Chunqin Zhang. Detecting trip purposes from

smartphone-based travel surveys with artificial neural networks and particle swarm

optimization. Transportation Research Part C: Emerging Technologies, 71:447–463,

2016.

[149] Fei Yang, Zhenxing Yao, and Peter J Jin. Gps and acceleration data in multi-

mode trip data recognition based on wavelet transform modulus maximum algorithm.

Transportation Research Record, pages 90–98, 2015.

[150] Meng-Chieh Yu, Tong Yu, Shao-Chen Wang, Chih-Jen Lin, and Edward Y Chang.

Big data small footprint: The design of a low-power classifier for detecting trans-

portation modes. Proceedings of the VLDB Endowment, 7(13):1429–1440, 2014.

[151] Yu Zheng, Like Liu, Longhao Wang, and Xing Xie. Learning transportation mode

from raw gps data for geographic applications on the web. In Proceedings of the 17th

international conference on World Wide Web, pages 247–256. ACM, 2008.

[152] Xiaolu Zhu, Jinglin Li, Zhihan Liu, Shangguang Wang, and Fangchun Yang.

Learning transportation annotated mobility profiles from gps data for context-aware

mobile services. In Services Computing (SCC), 2016 IEEE International Conference

on, pages 475–482. IEEE, 2016.

123

	 Introduction
	 Motivation
	 Justification
	 Objectives
	 Main Objective
	 Research Questions

	 Contributions
	 Structure

	 Theoretical Background
	 Feature Engineering Techniques for building Classification Models
	 Summary Statistics
	 Location
	 Spread
	 Shape
	 Dependence

	 Time and Frequency Domain
	 Principal Component Analysis
	 Recursive Feature Elimination

	 Machine Learning Techniques for building Classification Models
	 Logistic Regression
	 K-Nearest Neighbours
	 Naive Bayes
	 Decision Trees
	 Adaptive Boosting
	 Random Forest
	 Support Vector Machine
	 Neural Networks
	 Deep Neural Networks
	 Recurrent Neural Networks
	 Long-Short Term Memory
	 Gated Recurrent Unit

	 Automated Machine Learning Techniques for building Classification Models
	 Hyperparameter Optimization
	 Grid Search
	 Random Search
	 Bayesian Optimization

	 Combined Algorithm Selection and Hyperparameter Optimization
	 Global Optimization

	 Performance Metrics for evaluating Classification Models
	 Accuracy
	 Precision
	 Recall
	 F1-Score
	 Kappa Coefficient

	 Real-Time Travel Mode Detection with Location Sensors
	 Introduction
	 Related Works
	 Proposed Solution
	 Prototype Development
	 Prototype Evaluation
	 Methods
	 Data
	 Results
	 Discussion

	 ActivityRecognition API Evaluation
	 Methods
	 Data
	 Results
	 Discussion

	 Conclusion

	 Real-Time Travel Mode and Trip Purpose Prediction with Location Sensors
	 Introduction
	 Related Works
	 Travel Mode Detection
	 Trip Purpose Prediction
	 Joint Travel Mode and Trip Purpose Identification

	 Study Data
	 Proposed Solution
	 Preprocessing
	 Classification

	 Performance Evaluation
	 Evaluation Metrics
	 Proposed Solution with Random Search
	 Proposed Solution with Bayesian Optimization
	 Baseline Solution

	 Discussion
	 Travel Mode Detection
	 Trip Purpose Prediction
	 Time Window Size

	 Conclusions

	 Real-Time Travel Mode Detection with Multiple Sensors
	 Introduction
	 Related Works
	 Travel Mode Detection Technique used in a Public Benchmark Dataset
	 Travel Mode Detection Technique
	 Public Benchmark Dataset
	 Discussion

	 Feature Engineering
	 Evaluation Experiments
	 Obtained results
	 Discussion
	 Classification Performance
	 Classification Cost
	 PCA Impact

	 Conclusion

	 Real-Time Travel Mode Detection with Recurrent Neural Networks
	 Introduction
	 Related Works
	 Proposed Method
	 Generic Framework for Travel Mode Detection
	 Online Travel Mode Detection with LSTM
	 Implementation Design

	 Experiments
	 Settings
	 Details of Training and Implementation
	 Results Analysis
	 Five Second Time Windows
	 One Second Time Windows
	 Ten Second Time Windows
	 Summary and Discussion

	 Conclusion

	 Conclusions and Future Work

