
UNIVERSIDADE FEDERAL DO ESTADO DO RIO DE JANEIRO

CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA - CCET

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA - PPGI

HEURISTICS FOR SYSTEMS-OF-SYSTEMS DESIGN

Marcio Imamura

Orientador

Rodrigo Pereira dos Santos

RIO DE JANEIRO, RJ - BRASIL

Setembro 2021

HEURISTICS FOR SYSTEMS-OF-SYSTEMS DESIGN

Marcio Imamura

DISSERTAÇÃO DE MESTRADO APRESENTADA COMO REQUISITO PAR-

CIAL PARA OBTENÇÃO DO TÍTULO DE MESTRE PELO PROGRAMA DE

PÓS-GRADUAÇÃO EM INFORMÁTICA DA UNIVERSIDADE FEDERAL DO

ESTADO DO RIO DE JANEIRO (UNIRIO). APROVADA PELA COMISSÃO EX-

AMINADORA ABAIXO ASSINADA.

Aprovada por:

———————————————————————-

Rodrigo Pereira dos Santos, D.Sc. - UNIRIO

———————————————————————-

Everton Ranielly de Sousa Cavalcante, D.Sc. - UFRN

———————————————————————-

Marcio de Oliveira Barros, D.Sc. - UNIRIO

RIO DE JANEIRO, RJ - BRASIL

Setembro 2021

null

Catalogação informatizada pelo(a) autor(a)

I31
Imamura, Marcio
 Heuristics for Systems-of-Systems Design /
Marcio Imamura. -- Rio de Janeiro, 2021.
 136 f.

 Orientador: Rodrigo Pereira dos Santos.
 Dissertação (Mestrado) - Universidade Federal do
Estado do Rio de Janeiro, Programa de Pós-Graduação
em Informática, 2021.

 1. Systems-of-Systems. 2. Heuristics . 3.
Systems modeling. I. Santos, Rodrigo Pereira dos,
orient. II. Título.

Acknowledgements

First and foremost, I thank God for blessing my life and allowing me to get here

with joy and health.

I am extremely grateful to my supervisor, Prof. Rodrigo Pereira dos Santos,

who made this work possible. His diligent guidance and insightful advice took

me through all stages of my research with confidence, being always present and

respectful throughout this study journey.

I want to thank Francisco Ferreira for being a hard-working researcher who

helped me a lot and who knew when to say “stay calm” in the most desperate

moments. I would also like to thank Juliana Fernandes for their providential support.

I would like to thank all Complex Systems Engineering Laboratory colleagues for

helping me and for their friendship. In special, Luiz Costa, Nadja Piedade, Luciana

Chueri, and Felipe Cordeiro.

I want to give special thanks to my wife Ananda for her unfailing support and

understanding over the last two years while she worked twice as hard to raise our

son. I want to thank my son Antonio for his frequent interruptions asking me to

play, always keeping me focused on what’s essential in this world. They both had a

warm smile that comforted me at difficult moments.

I would like to thank my parents, Mr. Antorio (in memoriam), and Mrs. Luzia

(in memoriam). Both were raised in modest homes and understood how to pur-

sue education for themselves, me and my three brothers, Eduardo, Ricardo, and

Fernando. They provided us all we needed to be a happy family and decent persons.

Finally, I would like to thank IBGE for supporting me during the last two years.

iv

IMAMURA, Marcio. Heuŕısticas para Projeto de Sistemas-de-Sistemas.

UNIRIO, 2021. 136 páginas. Dissertação de Mestrado. Programa de Pós-Graduação

em Informática, UNIRIO.

Resumo

Um sistema-de-sistemas (SoS) é um arranjo de sistemas independentes que tra-

balham em sinergia para cumprir missões que nenhum desses sistemas poderia re-

alizar isoladamente. SoS podem ser observados em vários domı́nios, como mobil-

idade urbana, saúde e cidades inteligentes, para citar alguns. Uma preocupação

significativa dos engenheiros de SoS se refere a independência dos sistemas consti-

tuintes que tem autonomia para parar de contribuir ou abandonar um SoS, o que

dificulta garantir a qualidade do que é entregue em tempo de design. O objetivo

deste estudo é investigar boas práticas e recomendações que podem ser aplicadas ao

design de SoS para garantir sua adequada operação. Para tanto, esse trabalho utiliza

o termo “heuŕısticas” para descrever tais práticas e recomendações. Foi conduzido

um estudo exploratório para entender quais as preocupações em relação a um SoS

operando em uma organização pública brasileira. Além disso, foi conduzido um ma-

peamento sistemático da literatura (MSL) para identificar quais as heuŕısticas que

vêm sendo aplicadas em design de SoS. Um grupo focal foi realizado para organizar

os resultados do MSL. Por fim, foi aplicada uma pesquisa de opinião a especialistas

para avaliar quais heuŕısticas eram apropriadas ao design de SoS, resultando em

um catálogo de heuŕısticas. Foi criada uma ferramenta que incorpora algumas das

heuŕısticas do catálogo para verificar como as heuŕısticas podem facilitar o processo

de design de SoS. Um estudo de viabilidade foi conduzido com profissionais para

avaliar a facilidade de uso e a utilidade da ferramenta. Espera-se que o catálogo de

heuŕısticas e a ferramenta possam apoiar pesquisadores e profissionais no processo

de design de SoS e ajudem a identificar questões cŕıticas durante a fase de design.

Palavras-chave: Heuŕısticas, Sistemas-de-Sistemas, Modelagem de sistemas

v

IMAMURA, Marcio. Heuristics for Systems-of-Systems Design. UNIRIO,

2021. 136 pages. Master’s Thesis. Graduate Program in Informatics, UNIRIO.

Abstract

A system-of-systems (SoS) is an arrangement of independent systems that work

in synergy to fulfill missions that any of these systems in isolation cannot accom-

plish. SoS could be observed in several domains such as urban mobility, healthcare,

and smart cities, to mention a few. A significant concern of SoS engineers refers to

the independence of the constituent systems that have the autonomy to stop con-

tributing or abandon an SoS, making it difficult to guarantee the quality of SoS at

design time. This study aims to investigate good practices and recommendations

that can be applied to the design of SoS to assure its proper operation. There-

fore, we herein adopted the term “heuristics” to refer to such good practices and

recommendations. An exploratory study was conducted to understand the concerns

regarding an SoS operating in a Brazilian public organization. We further conducted

a systematic mapping study (SMS) to identify which practices have been applied in

SoS design. The results were discussed in a focus group to organize the first set of

heuristics. Finally, we surveyed experts to evaluate which heuristics are appropriate

to SoS design, resulting in a heuristics catalog. To facilitate the understanding and

implementation, the heuristics in this catalog have been organized into groups. Each

heuristic was categorized according to its suitability for use based on the coordina-

tion level of the SoS. A tool was created that incorporates some of the heuristics

from catalog to verify verify how the heuristics can facilitate the SoS design pro-

cess. A feasibility study was conducted with practitioners to evaluate the ease of

use and the usefulness of the tool. It was expected that the heuristics catalog and

the tool would support researchers and professionals in the SoS design process and

help identify critical issues during the design phase.

Keywords: Heuristics, Systems-of-Systems, Systems modeling

vi

Contents

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 2

1.3 Problem . 2

1.4 Objective and Research Questions . 3

1.5 Research Methodology . 4

1.6 Organization . 6

2 Background 7

2.1 Systems-of-Systems . 7

2.1.1 Systems-of-Systems Characteristics 9

2.1.2 Types of Systems-of-Systems 12

2.2 The mKAOS Language . 14

2.3 Heuristics . 16

2.4 Final Remarks . 18

3 Exploratory Study 19

3.1 Introduction . 19

3.2 System-of-systems of a Brazilian Public Organization 20

3.3 Investigating SoS problems . 22

3.3.1 Which are the problems regarding SoS operation? 23

3.3.2 How can problems be represented in SoS? 25

3.4 mKAOS extension proposal . 27

vii

Heuristics for Systems-of-Systems Design

3.5 Limitations . 30

3.6 Final Remarks . 31

4 Heuristics Catalog for SoS Design 33

4.1 Introduction . 33

4.2 Systematic Mapping Study . 34

4.2.1 Results . 36

4.3 Focus Group . 42

4.3.1 Planning . 42

4.3.2 Execution . 45

4.3.3 Results and Analysis . 49

4.4 Survey . 52

4.4.1 Planning . 52

4.4.2 Execution . 53

4.4.3 Results . 53

4.5 Limitations . 59

4.6 Final Remarks . 61

5 Modeling Tool 62

5.1 Introduction . 62

5.2 Requirements . 63

5.3 Implementation . 65

5.4 Evaluation . 68

5.4.1 Feasibility study . 68

5.4.2 Defects and improvements . 72

5.5 Limitations . 73

5.6 Final Remarks . 74

6 Conclusion 75

6.1 Epilogue . 75

6.2 Contributions . 76

6.3 Publications . 76

6.4 Limitations . 77

6.5 Future Work . 77

viii

Heuristics for Systems-of-Systems Design

Appendices 88

I Survey to evaluate heuristics 89

I.1 Data collection form . 89

II Tool code snippet 101

II.1 JavaScript routine to check model . 101

II.2 mKAOS Studio Lite tutorial . 105

IIIFeasibility study 110

III.1 Itinerary for the feasibility study meetings 110

III.2 Guidelines for tool evaluation . 111

III.3 Data collection form . 114

III.4 Survey responses to Q9, Q10 and Q11 122

ix

List of Figures

Figure 1.1 Research methodology. 4

Figure 2.1 Framework to categorize systems (MAHMOOD, 2016). 10

Figure 2.2 Constituent systems can participate in multiple SoS. Source:

(NCUBE et al., 2018) . 14

Figure 2.3 Conceptual model for missions of SoS (SILVA; BATISTA, et

al., 2015a). 15

Figure 3.1 mKAOS mission model. 22

Figure 3.2 mKAOS mission model annotated for the evaluation. 24

Figure 3.3 Part of the material presented in the survey. 26

Figure 3.4 Summary of the survey answers. 27

Figure 3.5 Symbols from BPMN used in this work. 28

Figure 3.6 Elements for reliability in the mkAOS extension. 28

Figure 3.7 mKAOS mission model with the proposed extension. 29

Figure 4.1 Selection process. 36

Figure 4.2 Focus group phases. 44

Figure 4.3 Profile of the respondents. 54

Figure 4.4 Responses to the survey. 55

Figure 5.1 mKAOS Studio Lite architecture. 65

Figure 5.2 Participants experience, position and education. 71

Figure 5.3 (A) Modeling knowledge and (B) SoS knowledge of participants. 72

Figure 5.4 TAM model questions. 72

x

List of Tables

Table 2.1 Usability heuristics for user interface. Adapted from (NIELSEN,

2005). 17

Table 2.2 Classes and objects heuristics. Adapted from (RIEL, 1996). . . 18

Table 3.1 Summary of constituent systems. 21

Table 3.2 SoS and CS Missions. 21

Table 3.3 Failures identified in the SoS. 24

Table 3.4 Survey questions. 26

Table 4.1 Selection criteria. 35

Table 4.2 Selected studies . 37

Table 4.3 Extracted heuristics. 37

Table 4.4 Which types of heuristics can be applied and how heuristics

were evaluated. 43

Table 4.5 Focus group roles. 44

Table 4.6 Heuristics categories. 50

Table 4.7 Refined Heuristics Catalog . 50

Table 4.8 Classification of heuristics for each type of SoS coordination. . 60

Table 5.1 Questions derived from TAM model to evaluate the tool. 70

Table 5.2 Questions Q9 Q10 and Q11 errors and suggestions. 73

xi

Chapter 1. Introduction

This chapter presents the context, motivation, problem, objectives and methodology

of this research. We also present the structure of this dissertation.

1.1 Context

Organizations seek to boost productivity to promote competitiveness and social

development. In this context, information systems (IS) are essential resources for

companies and governments to accomplish their goals. An IS is an organized combi-

nation of people, hardware, software, communication networks, data, policies, and

procedures. It stores, transform, and disseminates information in an organization

(O’BRIEN et al., 2011), also supporting business and decision-making processes.

New technologies such as cloud computing, Internet of Things (IoT), and mi-

croservices have fostered new possibilities to develop IS by providing infrastructure

that simplifies the development of new solutions with a faster development cycle,

safer environments, and lower cost. Such a scenario increases the presence of soft-

ware systems in the organizations and the integration of such a multitude of systems

enables the emergence of new capabilities.

This scenario have led professionals to adopt solutions referred to as systems-of-

systems (SoS), which is based on the collaboration among systems. SoS are charac-

terized by the managerial and operational independence of the systems that are part

of them, called constituent systems (CS). CS are often developed and maintained

by different teams.

Remarkable examples of SoS are smart cities (BOSCARIOLI et al., 2017), in

which public and private organizations work in coordination through the integration

of systems. SoS are also present in several areas such as healthcare, public security,

traffic, and other public and private services.

1

Heuristics for Systems-of-Systems Design

Nevertheless, there are several difficulties and open problems related to SoS that

require advances in system’ engineering (JAMSHIDI, 2008). In addition, there are

several concerns on how to design and maintain SoS in a more secure, reliable, and

efficient way since the CS are independent.

1.2 Motivation

The independence of the CS can be a challenge in SoS. In traditional systems, the

operation of the systems’ components is fully controlled by only one entity. In SoS,

there is more than one decision-maker, and the CS are not necessarily known at

design time (OQUENDO, 2016), which can make the architecture highly dynamic

and complex. CS can experience changes in the life cycle and be modified according

to their individual goals. However, there is a lack of standards to deal with the

challenges imposed by the SoS specific characteristics.

1.3 Problem

The process of designing an SoS can raise questions that are difficult to respond to,

such as:

• Which are the human and material resources needed?

Integrate systems from different companies, which are geographically dispersed,

and each one has individual goals, can be difficult, especially in defining human

and financial resources correctly.

• Which and whose responsibilities are involved in the processes?

A set of new responsibilities will be necessary for the SoS to work correctly.

However, in an environment in which everyone has their own goals, it can be

difficult to identify the responsibilities.

• Which resources are necessary for the SoS to work correctly?

It can be challenging to define, negotiate and guarantee how resources will be

delivered and consumed and how the SoS will use them.

• How to monitor the interaction among the independent systems?

2

Heuristics for Systems-of-Systems Design

In SoS, the independence of the CS produces a dynamic behavior of the archi-

tecture. Hence, it is necessary to monitor the interactions among the CS to

take appropriate actions in case of deviations.

There are several questions involving the design of SoS. Managers, developers,

and users should clearly understand how the SoS will operate and which systems are

interoperating. In addition, there are concerns on how to mitigate possible problems

that can be foreseen at design time and define the resources necessary to develop

and maintain the SoS before it starts operating.

1.4 Objective and Research Questions

This study aims to develop a catalog of heuristics by identifying rules, guidelines,

good practices, and recommendations that can be applied to the design of SoS. We

expect the catalog to help professionals to design SoS with more predictability and

better chances of success.

We defined a research question to guide our research and two secondary questions

to help us organize, evaluate, and understand the data collected in our research. The

primary research question is:

PRQ. Which heuristics can be applied to the design of SoS?

Heuristics are efficient cognitive processes, conscious or unconscious, which ignore

part of the information (GIGERENZER; GAISSMAIER, 2011) and can be used in

several areas of knowledge as a tool to provide:

• A good approximation rather than the perfect solution to a problem;

• A “well-calibrated guess” for decision making;

• Objective form of evaluation without having to know in depth the problem.

The Merriam-Webster’s Dictionary 1 defines heuristics as “an aid to learning, dis-

covery, or problem-solving by experimental and especially trial-and-error methods”.

Herein, we are considering heuristic as a recommendation to a designer in the

1https://www.merriam-webster.com/dictionary/heuristic

3

Heuristics for Systems-of-Systems Design

form of a set of empirical rules for identifying SoS issues to be resolved

at design time, when the cost of making wrong decisions is lower.

The secondary questions are:

• RQ1. For which types of SoS the heuristics can be applied?

Rationale: One of the issues to be considered in the design of SoS is how CS

are coordinated to provide the capabilities in a collaborative arrangement. The

level of coordination over the CS can affect the feasibility of applying heuristics.

Thus, the purpose is to identify to which types of SoS each heuristic can be

applied.

• RQ2. Are there interdependent relationships between the heuristics?

Rationale: Certain practices may affect the adoption of others. The pur-

pose of this question is to verify if there are trade-offs on the application of

heuristics.

As a secondary objective, we developed a tool that allows the professionals to

model an SoS using the mKAOS notation and check if the model is correct according

to the catalog of heuristics.

1.5 Research Methodology

We followed the methodology shown in Figure 1.1. The steps are described following:

Figure 1.1: Research methodology.

4

Heuristics for Systems-of-Systems Design

1. Literature review characterization. The objective of this step is to un-

derstand the SoS concepts and the challenges in the research field. This phase

allowed to define the scope of the research. In this phase it was published a

paper in the Extended Proceedings of XIII Workshop on Theses and Dis-

sertations in Information Systems (WTDSI’20) (IMAMURA; FERREIRA;

SANTOS, 2020). It was also published a study in the Proceedings of the V

Workshop on Social, Human and Economic Aspects of Software (WASHES’20)

that investigates factors to be considered when implementing SoS governance

(IMAMURA; COSTA, et al., 2020).

2. Exploratory study. In this phase, we conducted an exploratory study in

a Brazilian public organization to verify the perception of professionals on

issues related to a SoS in operation. Our study was published in the Pro-

ceedings of the XVII Brazilian Symposium of Information Systems (SBSI’21)

(IMAMURA; FERREIRA; FERNANDES, et al., 2021).

3. Systematic mapping study (SMS). The study aimed to identify the chal-

lenges of designing SoS reported in the literature and the approaches to solve

them. In this phase, we extracted the first set of heuristics.

4. Heuristics refinement and evaluation. We divided this phase into two.

First, we conducted a focus group to discuss the usefulness and applicability

of the heuristics identified in the SMS. Then, we refined the catalog based on

the focus groups discussion and carried out a survey with experts in a second

round of evaluation.

5. Tool specification and development. In this phase, we identified the

requirements for a tool that implemented the heuristics within an mKAOS

model and defined the appropriate infrastructure to support the tool.

6. Feasibility study. It was conducted a feasibility study with professionals

from the industry to verify the ease of use and usefulness of the tool. This

phase also allowed us to identify errors and make improvements in the tool.

7. Refinement. The first version of the tool was deployed using the feedback

from the feasibility study. We named the tool mKAOS Studio Lite in reference

5

Heuristics for Systems-of-Systems Design

to the mKAOS Studio (SILVA; BATISTA, et al., 2015a).

1.6 Organization

This dissertation is organized as follows.

Chapter 2 presents the fundamental concepts of SoS, modeling, and heuristics.

We also describe how heuristics have been applied in other areas.

Chapter 3 presents the exploratory study we conducted to obtain a prelimi-

nary understanding of how industry professionals perceive an SoS. We identified the

problems that affect the SoS operation and how they have been overcome.

Chapter 4 details the methodology we adopted to develop and evaluate the

heuristics catalog.

In Chapter 5, we explain the process of development and evaluation of the

mKAOS Studio Lite.

In Chapter 6, the conclusion and contributions are presented. We also describe

the research limitations and discuss the future work.

6

Chapter 2. Background

This chapter presents the fundamentals of SoS, the mKAOS language, and the

fundamentals of heuristics. We also present a systematic mapping study regarding

heuristics to SoS design.

2.1 Systems-of-Systems

In the last few years, the rise of the Internet of Things (IoT), virtual reality, machine

learning, microservices, cloud computing, and other technologies has fostered the

emergence of disruptive solutions, such as for Industry 4.0, smart environments,

and e-health, to name a few. These solutions have in common the fact that they

integrate independent systems into larger and more complex systems that provide

capabilities that can only be achieved through collaboration among systems. Such

arrangements are sometimes called System-of-Systems (SoS).

The literature has reported an increasing interest in SoS in the last few years

(CADAVID et al., 2020). In particular, the Brazilian Information Systems commu-

nity presented several challenges regarding SoS engineering that will be faced in the

following years (BOSCARIOLI et al., 2017).

The term SoS is not new. In 1956, Kenneth Boulding described SoS as “a whole

that is perceived as more than the sum of its parts” (BOULDING, 1956). Ackoff

defined SoS as an organization containing at least two systems that have a common

purpose. In this organization, systems react to behavior and communication with

another system (ACKOFF, 1971). The term has also been used by François Jacob,

in the 1970s, in the context of biological systems to describe “every object that is

studied by biology” (JACOB, 1974). Some other definitions of SoS are presented

below to show that there is no consensus on this concept:

“System-of-systems exist when there is a presence of a majority of the

7

Heuristics for Systems-of-Systems Design

following five characteristics: operational and managerial independence,

geographic distribution, emergent behavior, and evolutionary develop-

ment.” (JAMSHIDI, 2008)

“Systems of systems are large-scale concurrent and distributed systems

that are comprised of complex systems.”(CARLOCK et al., 2001)

;

“In relation to systems to support war fighting, a system of systems is

the integration of advanced command, control, computers, communica-

tions, and information systems with intelligence, surveillance, and recon-

naissance systems to provide dominant battle space awareness.” (MAN-

THORPE, 1996)

.

“A system would be termed a “system-of-systems” or a “collaborative

system” when: (1) its components fulfilled valid purposes in their own

right and continued to operate to fulfill those purposes if disassembled

from the overall system, and (2) the components systems are managed

(at least in part) for their own purposes rather than the purposes of the

whole.” (MAIER, 1998)

.

“A large widespread collection or network of systems functioning together

to achieve a common purpose.” (SHENHAR, 1994)

.

The idea of SoS from the perspective of systems engineering, as a set of inter-

connected independent systems, began in the 1980s with the US Defense Strategy

(NIELSEN et al., 2015). From that moment on, the field gained notoriety both in

academia and in industry. Systems-of-Systems Engineering (SoSE) emerged as a

recognized discipline for facing SoS-related challenges.

The SoS approach is verified in healthcare, power grids, aerospace, and smart

cities, to name a few. However, although there are numerous researches on SoS,

8

Heuristics for Systems-of-Systems Design

there are still divergences regarding its concept (NIELSEN et al., 2015). This is due

there is confusion regarding the distinction between SoS and “monolithic” systems”.

Asif Mahmood, for example, argues that this fact produces consequences in the

differentiation between systems engineering and SoSE. The author also highlights

that there are understandings that still make it more difficult to characterize this

class of systems (MAHMOOD, 2016):

“The human body is not an SoS, although it contains multiple systems

such as nervous system, respiratory system, digestive system, etc. The

rationale being that detaching eye or hand from the body cannot function

purposefully.”

Mahmood affirms that there is a severe concern in distinguishing SoS from mono-

lithic systems when prominent researchers consider a dog as an SoS (BAR-YAM,

2004) and the human body as the best example of SoS (CLARK, 2009).

As a more accurate form to distinguish types of systems with their respective

characteristics, the author proposes a flow of complexity represented in Figure 2.1.

The boxes represent the types of systems, and the balloons describe the criteria for

distinguishing such systems. The farther to the right of the image, the more complex

is the system (MAHMOOD, 2016).

2.1.1 Systems-of-Systems Characteristics

Due to the difficulty in conceptualizing SoS, researchers started to define its funda-

mental characteristics. A widely accepted characterization comes from Mark Maier

(MAIER, 1996), recognized by the International Council of Systems Engineering

as relevant in the sense of defining what it is an SoS. Maier defined that the five

essential characteristics of SoS are:

1. Operational independence of CS, which means that the SoS is formed by sys-

tems that are independent and useful by itself;

2. Managerial independence of CS, meaning that CS are acquired and managed

separately, maintaining their lifecycle independent of the SoS;

9

Heuristics for Systems-of-Systems Design

Figure 2.1: Framework to categorize systems (MAHMOOD, 2016).

3. Evolutionary development, by which SoS works and the purposes and imple-

mentations are added, removed and modified with experience;

4. Emergent behavior, where the SoS performs functions and carries out capa-

bilities that do not reside in any of the CS. The principal purposes of the SoS

are fulfilled by these emergent behaviors; and

5. Geographical distribution, indicating that CS are not operating in the same

location and depend on communication links to exchange information.

Despite this, the literature suggested that other features exist and that they

should be considered, as they are important for SoS Engineering. Hence, Claus

Nielsen proposed eight main dimensions of SoS based on a broad survey of the

literature (NIELSEN et al., 2015): i) autonomy of the CS; ii) independence; iii)

10

Heuristics for Systems-of-Systems Design

distribution; iv) evolution; v) dynamic reconfiguration; vi) emergent behavior; vii)

interdependence; and viii) interoperability.

The autonomy is related to the measure in which the behavior of a CS is

governed by its own rules and not by external ones. The CS perform their functions

according to individual rules even when serving the mission of an SoS (MAIER,

1996). Autonomy is related to the ability of a CS itself to pursue a specific goal

(BOARDMAN et al., 2006).

Due to the diversity of scenarios in which SoS are deployed, there may be varia-

tions in the autonomy exhibited by the CS. Therefore, modeling and analysis tech-

niques should allow the expression of such variations and should make explicit the

actions a CS can accomplish (NIELSEN et al., 2015).

Independence is the ability of a CS to operate out of its SoS. This characteristic

implies that a CS offers capabilities related to its role in an SoS and capabilities

specific to it by itself, i.e., they are independent of the SoS. That is, a CS exists by

itself and does not depend on the SoS. Independence of both design and operation

is a critical element in the definition of SoS (SHARAWI et al., 2006).

Distribution refers to the dispersion of the CS so that some connectivity mech-

anism must exist to allow communication and the sharing of information. This

characteristic denotes a physical separation, whether it is big or not. SoS models

must have the ability to describe the interconnection of CS through a communica-

tion channel. As a result, concurrency, delays, and communication failures must be

considered when modeling.

The evolution is related to the fact that SoS change over time, either in ca-

pabilities provided, in quality of the services provided, or even in its composition.

Thus, the evolutionary nature of SoS is an essential characteristic of this class of

complex systems. Moreover, Carlock et al. (2001) argue that SoS does not have a

permanent state, and Abbott (ABBOTT, 2006) emphasizes that SoS evolves contin-

uously. The evolutionary nature of SoS stems from the autonomy of its CS, which

have their development cycles, and the interventions that happen are manifestations

of individual needs associated with the environment.

Dynamic reconfiguration is the ability of SoS to make changes in its struc-

ture and composition. Several authors consider the ability to self-change an im-

11

Heuristics for Systems-of-Systems Design

portant characteristic, especially for ensuring that an SoS can handle failures and

other threats at runtime. To ensure dynamic reconfiguration ability, SoS models

should have abstractions for dynamic modification of architectures and interfaces

(NIELSEN et al., 2015).

Emergent behavior is the behavior that is the result of synergistic collabora-

tion among the CS. These behaviors are emergent properties of the entire SoS and

not the behavior of any of the CS (SAGE et al., 2001). However, emergent behav-

iors can be classified as desired or undesired. Therefore, the modeling and analysis

tools should allow the verification of emergent behaviors so that a practitioner can

maximize the effects of desired emergent behavior and avoid, or at least minimize,

the effects of the undesired behavior.

Interdependence consists of mutual dependence between CS. If a CS depends

on others CS to accomplish a task, there is an interdependence. Some authors

understand that an SoS should establish trade-offs between the level of independence

of the CS and the interdependence required to fulfill the SoS objective. It is essential

to highlight that, although the CS are independent and autonomous, the interactions

and interoperability require some degree of interdependence.

Finally, interoperability is the ability of an SoS to incorporate a set of hetero-

geneous CS that can exchange and understand information. Interoperability among

the CS must be present at the syntactic and semantic levels (MADNI et al., 2014).

Syntactic interoperability involves integrating and adapting communication inter-

faces, protocols, and standards to enable the interaction between systems. Semantic

interoperability consists of the ability of two or more systems to understand the

meaning of information. In SoS, CS must share and respect a common vocabulary

so they can achieve interoperability semantics.

2.1.2 Types of Systems-of-Systems

SoS are categorized according to the level of authority over the CS. SoS can be

virtual, collaborative, directed, or acknowledged (MAIER, 1996; DAHMANN et al.,

2008). The types directed, collaborative, and virtual were defined in 1996 by Mark

Maier. The type “acknowledged” was defined in 2008 by Dahmann and Baldwin.

The categories indicate the existence of a level of control, which exerts influence

12

Heuristics for Systems-of-Systems Design

on the architecture of an SoS, as it determines how adaptable and cooperative each

CS will be concerning requirements, interfaces, formats of data, and technologies

(NIELSEN et al., 2015).

In a directed SoS there is a central authority that ensures that such goals are

accomplished. The operational independence of the CS is preserved, but the opera-

tion is subject to a central authority. Directed SoS typically exist in organizational

environments such as the military.

A virtual SoS has no management authority and no common purpose. Virtual

SoS are characterized by a high degree of emergence. The forms and structures that

produce the capabilities of a virtual SoS are complicated to distinguish. The World

Wide Web (WWW) is an example of virtual SoS, in which control is associated with

published standards such as name resolution, navigation, and document structure.

Websites choose to adopt or not the published patterns. The virtual SoS is controlled

by forces that facilitate the adoption of standards (in the WWW, W3C1 has this

mission), which do not evolve in a controlled way but emerge according to the success

it achieves among the users.

In a collaborative SoS, CS are not required to comply with a central author-

ity. Instead, they voluntarily collaborate in order to achieve the goals of SoS. In a

collaborative SoS, there is the idea of shared management, but with very limited or

non-existent powers to enforce decisions. As an example of collaborative SoS, it is

possible to cite the Internet (MAIER, 1996), in which the IETF2 (Internet Engi-

neering Task Force) defines standards and protocols but has no power of imposition.

The Internet began as a directed SoS, controlled by the United States Advanced Re-

search Projects Agency Network. Over time, this network evolved from centralized

control to a decentralized environment, using unplanned collaboration mechanisms.

In an acknowledged SoS, there are agreed goals, a designated manager, and

resources specific to the SoS. The CS maintain independence in ownership, objec-

tives, financing, and development, and support. The acknowledged SoS focuses

on establishing collaborative management, maintaining administrative and techni-

cal independence at the CS level. The objective is that autonomy and ownership

are maintained and, at the same time, guarantee that changes can be collaborative

1http://www.w3.org
2http://www.ietf.org

13

Heuristics for Systems-of-Systems Design

and decided based on some common goals. A smart city, where different indepen-

dent agencies communicate in order to improve the quality of life of citizens, is an

excellent example of an acknowledged SoS (NCUBE et al., 2018).

Despite the categorization of SoS regarding its form of authority, there are vari-

ations. While the four types of SoS presented are quite distinct, SoS has extensive

limits, and then different parts of the same SoS can exhibit different types of classi-

fication. Moreover, CS may collaborate simultaneously to more than one SoS with

different authority structures (NCUBE et al., 2018), as shown in Figure 2.2. The

key challenges in this context include specifying SoS requirements, how to predict

SoS performance, how SoS requirements affect the CS, how the existing CS limit

the requirements for SoS, and how to ensure the SoS accomplishes its missions.

Figure 2.2: Constituent systems can participate in multiple SoS. Source: (NCUBE
et al., 2018)

2.2 The mKAOS Language

The mKAOS (SILVA; BATISTA, et al., 2015b) is a mission-oriented modeling lan-

guage that was created specifically to represent how CS interoperate in an SoS to

accomplish missions. It is based on the conceptual model proposed by Silva et

al. (SILVA; CAVALCANTE, et al., 2014), who identified the elements of an SoS

mission. The mKAOS is a specialization of KAOS (Keep All Objectives Satisfied)

(VAN LAMSWEERDE, 2001), a requirements engineering methodology used in the

14

Heuristics for Systems-of-Systems Design

industry that defines goals as its fundamental element. Figure 2.3 shows the con-

ceptual model for SoS missions. The heuristics can be understood as constraints

applied to the missions.

Figure 2.3: Conceptual model for missions of SoS (SILVA; BATISTA, et al., 2015a).

mKAOS has structurated in six different models to represent SoS elements of

the conceptual model for missions introduced in Figure 2.3. The main model is the

Mission Model that describes the missions and expectations. The Responsibility

Model addresses issues related to the assignments of missions and expectations to

the respective CS and environmental agents. The Object Model specifies the enti-

ties and events handled by the system, the domain hypotheses, which are desirable

characteristics and constraints, and the domain invariants, which are constraints

that must be maintained as SoS operates and evolves.

The Operational Capability Model defines the capabilities provided by CS

for the SoS. The Communicational Capability Model specifies the interactions

and cooperation among CS that are part of the SoS. Finally, the Emergent Be-

havior Model describes the behaviors produced by the interaction of two or more

CS while the SoS operates. These six mKAOS models work as viewpoints that allow

stakeholders to design and analyze SoS (SILVA, 2018).

15

Heuristics for Systems-of-Systems Design

As a part of mKAOS work, researchers also developed the mKAOS Studio, a

graphical tool based on open-source frameworks within the Integrated Development

Environment (IDE) Eclipse 3 platform. mKAOS (i) describes the interplay among

CS, missions, refinement of capabilities, objects, and emergent behaviors, often ig-

nored in other modeling tools, and (ii) produces detailed models that architects,

managers, and stakeholders can understand.

2.3 Heuristics

Logic, probability, and heuristics are three essential theories in humanity’s intellec-

tual history as problem-solving techniques (GIGERENZER, 2008). Since Aristotle,

logic was faced as a philosophy of perfect human thinking and inference, aiming to

preserve the truth. Probability Theory emerged in the late 17th century, replacing

logical certainty for a more modest theory of rationality, recognizing the funda-

mental uncertainty of human conduct (DASTON, 1980). From that moment on,

Probability Theory has transformed science and people’s lives, providing statisti-

cal methods used in scientific experimentation and solutions to everyday problems,

providing data with a degree of certainty that can be calculated.

As a third way to facilitate decisions, heuristics can be defined as mental opera-

tions that are employed in the judgment under uncertainty (TVERSKY et al., 1974).

Unlike statistical methods, heuristic is a strategy that ignores part of the informa-

tion, with the goal of making decisions more quickly, frugally, and/or accurately,

not doing optimization to find the best solution but instead find a “good-enough”

satisfying answer (GIGERENZER; GAISSMAIER, 2011). Calculating a function

with the maximum precision is a form of optimizing while choosing the first option

that exceeds an aspiration level is a form of satisficing.

Since the early twentieth century, heuristics have been used in a variety of fields,

including psychology, where cognitive heuristics are studied in human decision mak-

ing under uncertain conditions (SHERMAN et al., 1984). In political science, moral

heuristics are observed to play a pervasive role in moral, political, and legal judg-

ments (SUNSTEIN, 2005). In usability, heuristics are used to find usability problems

in user interface design evaluation (NIELSEN, 1994). Table 2.1 shows the set of ten

3https://www.eclipse.org/

16

Heuristics for Systems-of-Systems Design

Nielsen heuristics for user interface evaluation.

Table 2.1: Usability heuristics for user interface. Adapted from (NIELSEN, 2005).

Issue Statement
1 Visibility of system sta-

tus
Designs should keep users informed about what is going on,
through appropriate, timely feedback.

2 Match between system
and the real world

The design should speak the users’ language. Use words,
phrases, and concepts familiar to the user, rather than in-
ternal jargon.

3 User control and free-
dom

Users often perform actions by mistake. They need a clearly
marked “emergency exit” to leave the unwanted action.

4 Consistency and stan-
dards

Users should not have to wonder whether different words,
situations, or actions mean the same thing. Follow platform
conventions.

5 Error prevention Good error messages are important, but the best designs
carefully prevent problems from occurring in the first place.

6 Recognition rather than
recall

Minimize the user’s memory load by making elements, ac-
tions, and options visible. Avoid making users remember
information.

7 Flexibility and efficiency
of use

Shortcuts — hidden from novice users — may speed up the
interaction for the expert user.

8 Aesthetic and minimal-
ist design

Interfaces should not contain information which is irrele-
vant. Every extra unit of information in an interface com-
petes with the relevant units of information.

9 Help users recognize, di-
agnose, and recover from
errors

Error messages should be expressed in plain language (no
error codes), precisely indicate the problem, and construc-
tively suggest a solution.

10 Help and documentation It is best if the design does not need any additional expla-
nation. However, it may be necessary to provide documen-
tation to help users complete their tasks.

In software engineering, heuristics have been used in several contexts, including

design patterns, describing groups problems, and helping designers find and correct

them. In addition, heuristics can enable a ‘softer’ model to be constructed to ob-

tain a more holistic and subjective view of quality (CHURCHER et al., 2007). The

heuristics proposed by Arthur Riel are an excellent example that cover aspects of

object-oriented software development, including classes and objects, multiple inher-

itances, and association relationship (RIEL, 1996). Table 2.2 shows the heuristics

proposed by Riel to address classes and objects.

Heuristics proposed by Nielsen (NIELSEN, 1994), aiming to facilitate the user

interface design process, and those proposed by Riel (RIEL, 1996) that help to

avoid dangerous decisions in object-oriented software development, can be used as

guidelines to help software designers without however providing perfect solutions.

17

Heuristics for Systems-of-Systems Design

Table 2.2: Classes and objects heuristics. Adapted from (RIEL, 1996).

Statement
2.1 All data should be hidden within its class.
2.2 Users of a class must be dependent on its public interface, but a class should

not be dependent on its users.
2.3 Minimize the number of messages in the protocol of a class.
2.4 Implement a minimal public interface that all classes understand.
2.5 Do not put implementation details such as common-code private functions into

the public interface of a class.
2.6 Do not clutter the public interface of a class with items that users of that class

are not able to use or are not interested in using.
2.7 Classes should only exhibit nil or export coupling with other classes, that is, a

class should only use operations in the public interface of another class or have
nothing to do with that class.

2.8 A class should capture one and only one key abstraction.
2.9 Keep related data and behavior in one place.
2.10 Spin off non-related behavior into another class (i.e., non-communicating be-

havior).
2.11 Be sure the abstractions that you model are classes and not simply the roles

objects play.

2.4 Final Remarks

This chapter brought up concepts about SoS, presenting the types and characteristics

of this kind of system, about the mKAOS, a modeling language developed specifically

to model SoS and their missions, and about heuristics proposed for use in interface

design and object-oriented development, intended to help in software design.

In the Chapter 3, an exploratory study is presented in order to understand better

how the SoS approach is seen in the industry. This work was performed by surveying

practitioners in a real-world public organization about an SoS characterization using

the mKAOS mission model as well as the problems and concerns perceived in the

characterized SoS.

18

Chapter 3. Exploratory Study

In this chapter, an exploratory study is presented. It was conducted to verify prob-

lems and concerns related to an SoS running in a real-world environment. Section

3.1 presents an introduction to the study. In Section 3.2, there is a characteriza-

tion of the organization in which the SoS is in operation. Section 3.3 presents the

investigated SoS problems. Section 3.4 proposes a modeling extension to represent

SoS problems. Section 3.5 presents the study limitations, and Section 3.6 the final

remarks.

3.1 Introduction

A study about SoS was carried out in a Brazilian public organization to learn more

about how an SoS works and how problems and issues takes place in a real-world

organization. This study aimed at appropriating SoS concepts and realizing what

kind of issues could be foreseen and dealt with in an SoS using heuristics yet at

design time.

An SoS characterization was proposed using information from interviews with

professionals and by reading systems documentation. This allowed us to identify

the SoS missions, CS, constraints, relationships, and capabilities. We modeled the

SoS using the mKAOS language to support the characterization of the SoS.

Using the SoS model produced as a basis, a focus group and a survey were con-

ducted with professionals involved in SoS engineering, aiming to identify situations

that could affect the SoS operation and how they could be addressed. The focus

group and the survey contributed to the proposal of an initial extension to the

mKAOS notation that allows representing issues observed, such as failures and fault

tolerance mechanisms in SoS.

19

Heuristics for Systems-of-Systems Design

3.2 System-of-systems of a Brazilian Public Organization

This study was conducted in a Brazilian public organization with head office in Rio

de Janeiro, regional offices in 27 states, and more than 7,000 employees. The regional

offices coordinate 564 branches distributed across the country. The branches are

responsible for collecting demographic data through questionnaires applied during

face-to-face visits, applications via the Internet, or phone calls.

The SoS in operation in this organization provides data fusion capabilities that

support decision-making processes. Such a capability depends on data from differ-

ent systems, which we divided into two groups: technical and administrative. The

technical group involves systems that collect, store and process demographic and

economic data and produce statistics. The administrative group consists of systems

that support administrative processes, including human resources and contracts.

The systems were developed or acquired separately, which implies that different

teams are responsible for each IS, and their evolution reflects their specific demands.

The infrastructure that supports each IS is diverse in terms of technological plat-

forms, such as databases and programming languages.

Technical CS store demographic and economic data holds information on urban

infrastructure (i.e., healthcare, education, mobility, buildings etc.), agricultural ac-

tivity, economic activity, population profile, and employment. Administrative CS

support the management of human resources, financial and patrimonial data. In

addition, administrative CS store information about operational activities, such as

vehicle utilization and travel expenses. Table 3.1 lists systems and describes the

data that each of them provide to the SoS. Obvious names were adopted for the

sake of simplicity.

Table 3.2 describes the SoS and CS missions. M.02 mission consists of consolidat-

ing the work done and the location of the country’s demographic and economic data

collection activities of the M.05 to M.09 missions. It contains information about the

total work done with collected data. The available workforce mission M.03 refers to

the sum of the number of temporary and permanent employees. Mission M.04 is the

total business travels made by the employees using flight tickets (M.10) or vehicles

to transport employees (M.11). The primary mission M.01 consists of the relation

between the work done (M.02) versus the resources used (M.03 and M.04).

20

Heuristics for Systems-of-Systems Design

Table 3.1: Summary of constituent systems.

ID Constituent
system

Group Information produced Data pro-
vided to
SoS

CS.01 [Cities] Demographics
and economic

Urban infrastructure, such
as healthcare, transporta-
tion, and education.

Number of in-
quiries.

CS.02 [Population] Demographic
and economic

Deaths, births, and life ex-
pectancy.

Number of in-
quiries.

CS.03 [Employment] Demographic
and economic

Employment rate and
household income.

Number of in-
quiries.

CS.04 [Economic Activity] Demographic
and economic

Employment and income in
economic data for business.

Number of in-
quiries.

CS.05 [Agriculture] Demographic
and economic

Agricultural production. Number of in-
quiries.

CS.06 [Temporary Workers] Administrative Details on temporary em-
ployees, such as location,
job description, and con-
tracts.

Available
temporary
workers.

CS.07 [Permanent Workers] Administrative Details on permanent work-
ers, such as vacation, job
description, and location.

Available
permanent
workers.

CS.08 [Transportation] Administrative Details on work-related
travels, such as destina-
tions, use of company
vehicles, flight tickets etc.

Travel desti-
nations and
resources
used.

Although this SoS can be considered a directed SoS, conflicting situations in

which accomplishing the SoS mission are not a priority to any particular CS manager.

The SoS mission may not be treated as a priority by any CS as it is not part of their

individual objectives.

Table 3.2: SoS and CS Missions.

ID Description Type
M.01 Expense control SoS mission
M.02 Demographic and economic profile SoS mission
M.03 Available workforce CS mission
M.04 Total of travels SoS mission
M.05 Urban statistics CS mission
M.06 Population statistics CS mission
M.07 Employment and income household statistics CS mission
M.08 Economic statistics CS mission
M.09 Agricultural statistics CS mission
M.10 Travels’ registration: costs, dates, and passengers CS mission
M.11 Vehicles’ utilization: costs, dates, and passengers CS mission

To support the investigation, a model was constructed following the mKAOS

mission language. This model aimed to verify with practitioners if this arrangement

of systems fulfilling new missions could be characterized as an SoS. Mission model

21

Heuristics for Systems-of-Systems Design

is one of the six viewpoints implemented in mKAOS language (SILVA; BATISTA,

et al., 2015b).

mKAOS mission model (i) describes the interplay among CS, missions, refine-

ment of capabilities, objects, and emergent behaviors, and (ii) produces detailed

models that architects, managers, and stakeholders can understand. The elements

of the mKAOS notation used in this work and the first generated model are shown

in Figure 3.1.

Figure 3.1: mKAOS mission model.

3.3 Investigating SoS problems

Two research questions Were formulated to guide our investigation:

RQ1. Which are the problems regarding operation of the SoS?

RQ2. How can those problems be represented in the mKAOS mission

model?

Two studies were conducted to investigate the SoS problems and whether mKAOS

would be suitable for representing them: a focus group and a survey. The focus

group aimed to openly discuss how CS work to fulfill SoS missions and which con-

cerns related to reliability should be considered. With the information obtained, an

mKAOS mission model was generated with some annotations representing possible

22

Heuristics for Systems-of-Systems Design

points of failure in SoS and forms of recovery. This model was then presented to

professionals in a survey to verify the feasibility of incorporating new elements that

allow the problems representation into the mKAOS mission model.

3.3.1 Which are the problems regarding SoS operation?

A focus group was planned and executed to discuss the SoS operation and identify

situations that could jeopardize such operation. The focus group had five partici-

pants: a senior manager and two senior developers from the organization, and two

researchers, one with an Master’s degree and an M.Sc student. Before the meeting,

a summary of the material produced during an initial SoS modeling was provided

to the participants. The material consisted of (i) the definition of SoS and its char-

acteristics according to the architectural SoS principles (MAIER, 1998); (ii) basic

concepts of quality attributes; (iii) the SoS mKAOS mission model produced (Figure

3.1); and (iv) a brief explanation of some potential problem situations that could be

identified during the SoS characterization.

The focus group had the following agenda: (i) presentation of the participants,

(ii) clarification on the definitions of SoS and quality, (iii) evaluation of concepts

and the SoS model, (iv) verification of the usefulness of the model to address SoS

quality, and (v) comments and suggestions. During the discussions, one participant

emphasized that he had little familiarity with SoS concepts. Despite that, the

model was considered sufficient for all participants to recognize the arrangement of

independent systems as an SoS and how each CS contributes to accomplishing the

overall mission.

The participants identified some problems as failures that were classified as tem-

porary and permanent. A failure is considered temporary when it occurs for some

time and disappears with no intervention. A failure is considered permanent when

it is continuous. In this case, a repair or component replacement is required. For

instance, an interruption in the power supply is a temporary failure for someone

using a computer, while a broken keyboard is a permanent failure. Changes in the

implementation of a CS imply permanent failures for the SoS. For instance, changes

in the parameters for requesting a service or changing the data format.

Participants discussed two types of temporary failures that imply data unavail-

23

Heuristics for Systems-of-Systems Design

ability: network failures and data service failures. Network failures may occur due

to high network usage or connectivity interruptions, which causes delays and/or

packet loss. Data service failures can occur due to an excessive number of calls on

web services. The failures identified are described in Table 3.3.

AM.02

CS.09

CS.07 CS.08

CS.01
CS.02

CS.03

CS.04

CS.05

M.05
M.08

M.09
M.06

M.07

M.10 M.11

M.03
M.02

M.04

CS.06

M.01

Communication
delays (TF)

CS interface
stopped working
(PF)

Excessive service
calls (TF)

M.02 failure
(TF/PF)

Failure indicative

Legend

Description of failure type

Figure 3.2: mKAOS mission model annotated for the evaluation.

Table 3.3: Failures identified in the SoS.

Failure Type Description
Communication delays Temporary Data that depend on manual collection is sent

in batches to the respective IS and can take up
to a month to be incorporated in the database.

Service unavailability Temporary Excessive calls to data services (microservices,
databases etc.) and network traffic cause ser-
vices unavailability.

CS interfaces have changed
without notice

Permanent Unannounced maintenance of a given CS causes
interruptions in data provision. Examples of
effects of such failures are unresponsive services
and unknown data formats.

As the federal government imposes the adoption of practices that assure trans-

parency policies, a significant portion of the previous years’ institutional data is also

available in open data portals. Such data are an alternative source of information

when the primary sources coming from CS are unavailable.

Participants reported strong reluctance of managers in sharing information among

the organizational sectors. This situation implies difficulties in building a strategic

24

Heuristics for Systems-of-Systems Design

vision of the whole organization. The lack of synergy among all the CS affects the

long-term sustainability of the SoS. Problems that do not directly affect the oper-

ation of a CS individually - such as interoperability problems - can make the SoS

inoperable or unavailable. In these cases, the SoS capability is recovered when an

authority requests it.

3.3.2 How can problems be represented in SoS?

The focus group shed light on mainly in reliability issues. The circumstances de-

scribed by the participants served as a basis to elaborate a survey for further ex-

ploring reliability representation in the mKAOS mission model. A new material was

developed on the SoS mission model with annotations that were presented to the

professionals. The material included a modified version (Figure 3.2) of the SoS mis-

sion model with failure indicative symbols that points to failures and one potential

redundancy solution, the Open Data Portal (CS.09). The Open Data Portal can

support SoS in accomplishing the mission since it has capabilities similar to both

the Number of Travels mission and the Demographic and Economic Profile mission,

but providing only annual historical data, so there is a significant delay in updating

data with this redundant CS capability.

The material presented to the respondents were (i) the terms and concepts of

SoS and reliability and (ii) the modified SoS mission model with the propositions

perceived in the focus group discussions. Figure 3.3 shows an example of a possible

failure. The survey’s objective was to verify if the annotated mKAOS mission model

was easy to understand and if it helped to properly visualize circumstances that

could affect the SoS. A five-point Likert scale was used for all survey questions (1.

Strongly disagree; 2. Disagree; 3. Indifferent; 4. Agree; 5. Strongly agree). An

invitation was sent to 20 professionals from the CS engineering teams, including

managers, developers, and architects — all of them with expertise on the different

CS that compose the SoS. The survey was answered by 11 participants. One of

them holds a Ph.D degree, 3 hold a Masters’ degree, 4 hold a Specialization degree,

2 hold a Bachelor’s degree, and one participant completed high school.

The survey questions are described in Table 3.4 and a summary of the answers

is shown in Figure 3.4. Q.01 and Q.02 answers reinforce the model’s usefulness

25

Heuristics for Systems-of-Systems Design

M.09

Possible failure: Migration of
legacy system from client-server to
web architecture cause some web
services to stop responding

Figure 3.3: Part of the material presented in the survey.

in describing how CS are organized to fulfill the SoS mission. In Q.03, it was

observed that the failure indicative symbols with text box descriptions representing

redundancy situations were accepted as a resource to describe the reliability issues,

although they are just annotations above the model.

Table 3.4: Survey questions.

ID Question
Q.01 Does the model allow an understanding of SoS objectives?
Q.02 Does the model describe how the different CS contribute to the SoS?
Q.03 Is the model capable of describing any redundancy in the case of

failures of any CS?
Q.04 Is the model capable of describing situations in which the SoS recovers

from failures?
Q.05 Does the model allow the understanding of situations that affect avail-

ability (i.e., the system’s ability to be available when required)?

Functional redundancy consists of using two or more different components to

accomplish a given task (JACKSON et al., 2013). One respondent commented that

it is not clear how redundant elements are activated in case of CS unavailability.

Analyzing the Q.04 answers was perceived that few participants identified how the

SoS recovers from failures. Q.05 answers reveal that it was not clear how to check

availability by looking at the mKAOS model, even with the provided annotations.

In addition, the responses to Q.01 and Q.02 show that the SoS concepts were well

understood, and the mKAOS model was useful to represent the SoS. However, re-

sponses to Q.03, Q.04, and Q.05 show that, even with the verbatim representation

of the failures written over the model, the reliability issues could not be understood

right away reading annotations.

Regarding the failures identified in the study, they can occur due to several

causes, including changes in implementation, malfunction, bugs, hardware problems

etc. Communication channels are significant sources of problems. SoS failures can

26

Heuristics for Systems-of-Systems Design

Q.01

Q.02

Q.03

Q.04

Q.05

0% 20% 40% 60% 80% 100%

Strongly agree Agree Indifferent Disagree Strongly disagree

Figure 3.4: Summary of the survey answers.

occur even if none of the CS have any malfunction nor fail to meet any specifications

for which it was designed. In other words, a reliability issue in the SoS is not

necessarily a problem for any of the CS.

Even though the mKAOS model allows the understanding of the CS interplay

in accomplishing missions, a new set of elements is necessary to represent failure

situations and how these problems can be avoided in interpreting the model. Non-

functional requirements such as reliability are not covered by mKAOS notation,

requiring additional artifacts to address such aspects. Therefore, an mKAOS exten-

sion was proposed to represent the situations identified in the studies conducted in

a real world SoS.

3.4 mKAOS extension proposal

After the investigation, it was possible to propose an extension to the mKAOS

notation to represent reliability issues in mKAOS mission model. The extension was

inspired by the Business Process Model and Notation (BPMN), largely recognized

in the industry.

The BPMN’s primary objective is to provide a unique notation of business pro-

cess (OMG et al., 2011). The use of elements already known in modeling languages

can facilitate understanding and standardize communication. Some of these sym-

bols could be applied to describe redundancy mechanisms and failure situations in

27

Heuristics for Systems-of-Systems Design

an SoS. Figure 3.5 shows the BPMN symbols used to represent such situations. The

BPMN events symbols are applied to describe failures that affect CS capabilities

provision, while gateway symbols are applied to represent how these failures are

addressed.

Timer event

Cancel event

Exclusive gateway

Figure 3.5: Symbols from BPMN used in this work.

(a) Temporary failure

(b) Permanent failure

1

2

(c) Redundancy with priority
for permanent failure

1

2

(d) Redundancy with priority
for temporary failure

Figure 3.6: Elements for reliability in the mkAOS extension.

The “Exclusive Gateway” symbol represents situations in which there are two or

more redundant capabilities available in a given SoS. Only one of them should be se-

lected as the priority option. Temporary failures were represented with the “Timer”

symbol, while permanent failures were represented with the “Cancel” symbol. Fig-

ure 3.6 illustrates the new elements proposed to compose the mKAOS extension

with the representation of reliability aspects.

28

Heuristics for Systems-of-Systems Design

M.01

1

CS.01
CS.02

CS.03
CS.04

CS.05

1

M.10 M.11

M.03

M.05

M.02

M.08
M.09

AM.02

CS.09

M.06
M.07

CS.06

CS.07 CS.08

M.04

2

AM.10
2

Figure 3.7: mKAOS mission model with the proposed extension.

A representation of a temporary failure is shown in Figure 3.6.a. The symbol is

positioned on edge directly linked to the capability provided to represent the tem-

porary failure. This notation focuses on the edge because the failure itself is not

necessarily a CS failure but a failure to provide a capability to an SoS. The dotted

yellow edges denote that the capability provided by a given CS can be interrupted,

and these dotted edges are used in all the lines above after the respective refine-

ment until the failure is properly addressed. Figure 3.6.b illustrates a permanent

failure. The representation is positioned at the edge directly linked to the respective

capability.

Figure 3.6.c describes the element representing redundancy. The priority for

activation of each capability is also indicated to facilitate using the model to com-

municate which CS is immediately activated in case of failures. The same applies

to redundancy for temporary failures, as shown in Figure 3.6.d. The redundancy

sources connected to the gateways address the problems caused by temporary or

permanent failures and spread the effect to subsequent higher nodes, making the

dotted lines continuous.

Figure 3.7 shows the model with possible failures and how they are addressed.

29

Heuristics for Systems-of-Systems Design

The redundancy mitigates the situations of a permanent failure in M.02 and tem-

porary failure in M.10, implying activation of AM.02 and AM.10 mission to provide

data from previous years as an alternative to M.02 and M.10, respectively. Delays in

data transmission from M.05, M.09, and M.10, represented with temporary failure

symbols, may be acceptable to a CS and negatively affect the SoS mission. A per-

manent failure in M.08 occurred when CS.04 technological platform was upgraded

and changed its communication protocol. Redundancy is activated by using CS.09

(Open Data Portal) to provide a redundant capability for M.10.

3.5 Limitations

The focus group has advantages and disadvantages regarding the number of par-

ticipants. Small groups, such as in this work, make discussions more comfortable,

enhance participants’ involvement, provide more time for individual participation,

and moderate conflicting opinions properly. On the other hand, large groups facili-

tate the composition of a broader vision on the subjects (KITZINGER, 1994).

Redundancy is one of the mechanisms of fault tolerance, one of the four charac-

teristics that software must have to be considered reliable, according to ISO 25010.

Hence, further studies are necessary to represent other reliability issues. Moreover,

in the studied scenario, only a directed SoS was investigated. Different levels of

managerial control and authority over the CS imply that different SoSE approaches

may be required in other types of SoS. Hence, collaborative, acknowledged, and

virtual SoS types need to be addressed in further researches.

Although the number of people in the survey can be considered acceptable

(NULTY, 2008), the results cannot be generalized since a single case has been

studied. In addition to this real SoS running in a Brazilian public organization,

other SoS cases need to be investigated in different public and private institutions

to enrich results with more views on the subject and contribute with more in-depth

investigation and results. Finally, before the initial mKAOS extension proposal can

help SoS engineers to deal with reliability issues, it is necessary to properly evaluate

and adjust it before considering the feasibility of incorporating it into the mKAOS

tool.

30

Heuristics for Systems-of-Systems Design

3.6 Final Remarks

Problems including reliability are non-functional requirements of IS widely consid-

ered in quality assessment and well defined by well-established norms and standards

worldwide. However, there are gaps to be filled when moving to the SoS context.

Reliability is a fundamental attribute to be treated in SoS since the CS indepen-

dence, and the resulting dynamic architecture of the SoS can bring new reliability

issues not observed in CS individually. Although SoS reliability is not yet a widely

addressed problem, some studies describe these problems’ source and propose prac-

tices to minimize failures. In addition, recognizing the different types of failures is

essential in deciding the most appropriate means to adequately address each type

of problem and mitigate the risks for accomplishing SoS missions.

The model of the SoS in operation in a Brazilian public organization developed

from the mKAOS language was useful to allow the participants to produce valu-

able discussions in the focus group. It was possible to describe failures and fault

tolerance mechanisms. The description of reliability issues using a model facilitates

communication and helps to achieve solutions to deal with reliability issues.

An evaluation of the extension was conducted to investigate its usefulness and

potential improvements. After the extension of mKAOS evaluation and adjuste-

ments, a tool was developed aiming to help professionals deal with SoS operation

issues (IMAMURA; FERREIRA; SANTOS, 2020). Such a tool could be helpful

to analyze the CS attributes and how their interplay within an SoS, allowing the

reliability issues and other issues to be identified and solved at design time.

This study used only the mKAOS mission model notation and a proposed ex-

tension. As future work, the SoS representation could be enhanced using other

viewpoints from mKAOS notation so that more SoS components and features can

be represented, improving the understanding of SoS-related issues.

The case presented in this work is not exhaustive. Despite that, it was expected

that this work allows a reflection on the adoption of practices to recognize, eliminate,

reduce, or avoid conditions that may degrade SoS operation.

This exploratory study was conducted to understand how an SoS operates in the

real world and what the concerns are seen by professionals working with CS involved

in the SoS operation. It was observed that there are issues that negatively affect the

31

Heuristics for Systems-of-Systems Design

SoS, but are not perceived by any of the CS. It might be useful to know what are

those new issues and how they can be handled at the SoS level. One way to deal

with those issues is to find heuristics that can be applied to handle such problems

in SoS, even in design time.

In Chapter 4, a research methodology was defined and executed aimed to inves-

tigate what are the heuristics suitable for SoS and how they can be organized and

applied in the design phase.

32

Chapter 4. Heuristics Catalog for SoS

Design

The objective of this chapter is to describe the process of extraction, organization

and evaluation of the heuristics for SoS design. Section 4.1 presents an introduction.

In Section 4.2, we present a systematic mapping study, aimed to extract heuristics

applied do SoS design from literature. Section 4.3 presents a focus group conducted

to organize the heuristics. Section 4.4 describes a survey conducted to evaluate the

organized heuristics. Section 4.5 describes the limitations of this study and Section

4.6 present the final remarks.

4.1 Introduction

To construct the proposed heuristics catalog, a SMS was selected as the method to

extract the heuristics from literature. A total of 40 heuristics were extracted from

selected studies from different authors, so there are similar, complementary, and

divergent views on how heuristics can be applied in SoS design.

Additional work should be done to organize the extracted heuristics from SMS,

making them useful in practical SoS design activities. A focus group was conducted

to refine and organize the initial set of 40 heuristics. The focus group was selected

as the appropriate instrument to capture the perception of experts and refine the

ideas and concepts extracted from the literature.

After the refinement done in the focus group analysis, a survey was conducted

with SoS experts to evaluate the resulted set of heuristics.

33

Heuristics for Systems-of-Systems Design

4.2 Systematic Mapping Study

The design of an SoS presumes that the collaboration among independent systems

can help solve a problem that could not be solved by a single system alone (SAGE

et al., 2001). However, ensuring SoS quality is particularly challenging since it is

necessary to deal with the intrinsic characteristics of this type of system, which often

deals with unpredictability and uncertainties.

To deal with these issues can be difficult. For instance, is there any way to

monitor or mitigate undesirable behaviors when a CS changes the level of its con-

tribution or leaves the SoS without notice? This situation can continually affect the

accomplishment of SoS missions, and it is necessary to create solutions to minimize

uncertainties when designing SoS.

To understand how these problems have been addressed, we carried out a sys-

tematic mapping study. To do so, we adopted the GQM (Goal-Question-Metric)

method to define the objective (BASILI et al., 1994): analyze the SoS literature

with the purpose of characterizing the current state-of-the-art with respect to

rules, design principles, recommendations, and standards for the design of SoS from

the point of view of researchers in the context of systems-of-systems. Based on

this objective formulated with GQM support, we proposed two research questions:

RQ1. Which heuristics have been applied to SoS design?

Rationale: Identify design principles, good practices, and recommendations that

have been adopted in the design of SoS.

RQ2. For which types of SoS the heuristics can be applied?

Rationale: One of the characteristics to be considered in the SoS design is how

the CS are coordinated to provide the required capabilities. The type of SoS can

facilitate or hamper the adoption of heuristics. Thus, the purpose is to identify for

which types of SoS each heuristic can be applied.

A search string was defined from the keywords “System-of-Systems”, “Heuris-

tics”, “Design Principle”, “Pattern”, and “Rule”. The keywords were connected

using the AND logical operator, while variations and synonyms were connected us-

ing the OR operator. The terms of the search string were selected aiming at a

broader search, i.e., a large coverage of studies. We tested different configurations

34

Heuristics for Systems-of-Systems Design

of the search string in Scopus1, which is considered the largest scientific publication

database that indexes the most relevant publication venues. After calibrating the

search string, the final string was:

("system-of-systems" OR "SoS" OR "system of systems" OR "systems

of systems" OR "systems-of-systems") AND ("heuristics" OR

"heuristic" OR "design principle" OR "design principles" OR

"pattern" OR "patterns" OR "rule" OR "rules")

We also carried out searches in ACM Digital Library2 and IEEExplore3. At the

end of the searches, 3,765 studies were retrieved. Then, we removed the duplicated

studies, resulting in a set of 3,645 studies. Next, we looked at the title, abstract,

and keywords and applied the selection criteria described in Table 4.1 where IC1 is

the inclusion criterion and EC1 to EC5 are the exclusion criteria.

We discarded 3,393 studies and 372 remained for a detailed analysis. Following,

we read the abstract and conclusion of the remaining 245 studies and, after applying

again the selection criteria, 14 studies were selected for the data extraction. The

selected studies are listed in Table 4.2.

Table 4.1: Selection criteria.

ID Criteria
IC1 The study presents a discussion on systems-of-systems heuristics, design prin-

ciples, patterns or rules.
EC1 Study is not available for download openly or through institutional access and

could not be retrieved from the author.
EC2 Study is not written in English.
EC3 The study is a book, tutorial, editorial, abstract, poster, panel, lecture, round

table, workshop, demonstration or preface.
EC4 The study is not a primary study.
EC5 Study deals with concepts and acronyms not specifically linked to systems-of-

systems.

We adopted the process described in Figure 4.1 as our research method to carry

out the systematic mapping study. At the end of the process, 14 studies was selected.

Table 4.2 shows the studies with respective reference.

1http://www.scopus.com
2https://dl.acm.com/
3https://ieeexplore.ieee.org/

35

Heuristics for Systems-of-Systems Design

Figure 4.1: Selection process.

4.2.1 Results

Despite the use of the term “heuristic” and its synonyms, the studies S12, S13, and

S14 are not considered applicable heuristics according to the proposed formulation

previously shown in Table 2.1 and Tables 2.2. Study S12 presents a 5-step roadmap

to facilitate the choice of interoperability standards for SoS deployment. The study

S13 proposes an 8-phase process to address SoS missions. Study S14 deals with

creating test cases, a step to be executed after the SoS design.

In Table 4.3, we present the 40 extracted heuristics and the respective rationales

from the studies S01 to S11. Table 4.4 describes the types of SoS addressed and

36

Heuristics for Systems-of-Systems Design

Table 4.2: Selected studies

ID Study Reference
S01 SoS-Centric Middleware Services for Interoper-

ability in Smart Cities Systems
(LOPES et al., 2016)

S02 Developing systems thinking skills using health-
care as a case study

(MCDERMOTT, 2018)

S03 Architecting principles for systems-of-systems (MAIER, 1998)
S04 Challenges for SoS Architecture Description (BATISTA, 2013)
S05 Towards a Dynamic Infrastructure for Playing

with Systems of Systems
(SCHNEIDER et al., 2014)

S06 When Ecosystems Collide: Making Systems of
Systems Work

(SILVA AMORIM et al., 2014)

S07 A cooperative SoS architecting approach based
on adaptive multi-agent systems

(BOUZIAT et al., 2018)

S08 A generalized options-based approach to mitigate
perturbations in a maritime security system-of-
systems

(RICCI et al., 2013)

S09 A Meta-Process to Construct Software Architec-
tures for System of Systems

(GONÇALVES et al., 2015)

S10 Harnessing Emergence: The Control and Design
of Emergent Behavior in System of Systems En-
gineering

(MITTAL et al., 2015)

S11 On the Challenges of Self-Adaptation in Systems
of Systems

(WEYNS et al., 2013)

S12 Randomisation in designing software tests for sys-
tems of systems

(LIANG et al., 2012)

S13 “Understanding Patterns for System of Systems
Integration

(KAZMAN et al., 2013)

S14 A Process to Establish, Model and Validate Mis-
sions of Systems-of-Systems in Reference Archi-
tectures

(GARCÉS et al., 2017)

how each of the heuristics was evaluated by the primary studies.

Table 4.3: Extracted heuristics.

ID Ref. Description Rationale

H01 S01 The SoS coordination must

ensure that each CS can ex-

change and understand data

and messages with the other

CS.

Communication standards need to be maintained

by the SoS coordination to ensure that each con-

stituency can communicate with the others when

necessary.

H02 S01 The SoS coordination must

ensure that the policies for ac-

cessing and using the capabil-

ities of the CS can be shared

and understood by all CS.

It is necessary to ensure that each CS can partic-

ipate in SoS respecting other CS’ policies. The

management and dissemination of these policies

are necessary given the characteristics of indepen-

dence of the CS and the SoS dynamic architec-

ture.

Continue on next page

37

Heuristics for Systems-of-Systems Design

Table 4.3 – continued from previous page

ID Ref. Description Rationale

H03 S02 The design process must iden-

tify who benefits from SoS.

Every SoS is built and operates with a purpose.

It is important to identify those who benefit from

the activities and/or activities of SoS.

H04 S02 The design process must iden-

tify who pays for the develop-

ment and operation of SoS.

It is necessary to inform the stakeholders how and

by whom SoS construction and operation activi-

ties will be funded to deal with these issues cor-

rectly.

H05 S02 The design process must iden-

tify who provides the nec-

essary capabilities and re-

sources for SoS operation.

SoS depends on a synergy between systems that

provide the capabilities and resources necessary

for its operation.

H06 S02 The design process must iden-

tify which stakeholders are

disadvantaged when partici-

pating in SoS.

It is not always possible to guarantee that all SoS

participants can only benefit from being part of

the system. Therefore, it is necessary to man-

age the disadvantages of participating in SoS to

ensure CS’ encouragement and/or replacement.

H07 S02 The value of a product or

service provided by SoS for

each participant must be de-

termined.

The value-centered philosophy of the products or

services provided by SoS should be used so that

efforts are focused on the benefits brought by the

results and not on the results themselves.

H08 S02 The participants’ perception

of how SoS is executed and

what the results are must be

identified.

The participants’ perception of what occurs in

SoS and how it delivers the results is more im-

portant than the facts on the operation and the

results themselves. Therefore, it is necessary to

manage the information flows to understand and

appreciate how SoS is managed.

H09 S02 Open architectures should be

adopted for SoS development

and evolution.

The SoS must evolve to adapt to its consumers’

needs. Thus, open architectures facilitate the SoS

SoS evolution. On the other hand, closed archi-

tectures that require the use of proprietary tech-

nologies or some licensing can make the SoS evo-

lution difficult or unpractical.

Continue on next page

38

Heuristics for Systems-of-Systems Design

Table 4.3 – continued from previous page

ID Ref. Description Rationale

H10 S03 Stable intermediate forms of

architecture must be defined

in the SoS evolution process.

For an SoS to dynamically evolve yet maintaining

continuous operation, it is necessary to think of

intermediate states to enable the feasible transi-

tion.

H11 S03 It must be defined which CS

should be helped, which ones

can recover on their own and

which ones are not worth in-

vesting efforts to recover.

Only realistic and possibly practical maintenance

strategies should be applied for the maintenance

of CS.

H12 S03 Interfaces between the CS

must be defined already at

design time.

Interfaces between CS are a crucial factor in the

operation of SoS as they enable collaboration.

H13 S03 Incentive mechanisms for col-

laboration among CS must be

identified in the design phase.

Collaboration among independent systems may

have no apparent use for participants.

H14 S04 The components represented

in the model at both SoS-

level and CS-level must de-

scribe interfaces, properties,

and constraints declared un-

ambiguously.

It is necessary to define interfaces, properties, and

constraints for the SoS and CS levels for ways

to address how individual properties impact SoS

reliability.

H15 S05 Interoperability must be as-

sured rather than integration.

Unlike integration, interoperability works with

loose coupling among systems, favoring the re-

placement of CS and the evolution of SoS.

H16 S05 Define which functions should

be implemented and which

are already available in the

CS for developing the SoS.

The design process must anticipate whether there

are functionalities available in the CS to collabo-

rate or if this functionality needs to be developed.

H17 S05 Define the data that should

be exchanged among subsys-

tems.

The specification of the data set exchanged

among the CS must be described in detail to gen-

erate the necessary capabilities for an SoS to fulfill

its mission.

H18 S05 It is necessary to justify the

reason to CS to exchange

data.

All CS must be aware of why data is exchanged

to ensure value delivery and avoid conflicts.

Continue on next page

39

Heuristics for Systems-of-Systems Design

Table 4.3 – continued from previous page

ID Ref. Description Rationale

H19 S06 Interface patterns resulting

from the evolution must be

identified.

The evolutionary process can generate the need to

adopt new communication patterns or to update

existing patterns. It is necessary to maintain the

standards as the CS evolve.

H20 S06 Interfaces must be treated in

layers or as service buses.

Layered or service bus design allows replacing

modules or studying alternatives for required ca-

pabilities without affecting SoS operation.

H21 S06 Validation and verification

activities must be applied to

all phases of development.

As with traditional systems, rather than test-

ing validation and verification at the end of the

lifecycle, each development phase should be fol-

lowed immediately with these activities that pro-

vide feedback so errors can be fixed as soon as

possible.

H22 S07 Criticality must be consid-

ered for SoS evolution.

Criticality takes into account the dynamics

among the CS and the environment. Each CS

must autonomously choose which interaction pro-

duces less criticality.

H23 S08 Perturbations must be identi-

fied to assess architectural al-

ternatives.

It is necessary to understand which alternatives

produce the least disturbance during SoS opera-

tion. Alternatives must be evaluated with metrics

that make it possible to evaluate the solution.

H24 S09 The self-regulatory capabili-

ties of each CS must be iden-

tified.

Each CS has the autonomy to regulate itself at a

certain level. This autonomy must be represented

in the SoS design.

H25 S09 The SoS architecture must al-

low feedback.

It is necessary to monitor SoS operation to detect

problems during its operation. Monitoring can

reveal the behavior of the CS and the dynamism

of SoS.

H26 S09 The integration of self-

managed systems must be

consistent with the processes

and individual interests of

the CS.

How SoS can provide feedback to those respon-

sible for its operation must be foreseen from the

design.

Continue on next page

40

Heuristics for Systems-of-Systems Design

Table 4.3 – continued from previous page

ID Ref. Description Rationale

H27 S09 Support for connectivity

among geographically dis-

persed CS must be provided.

It is necessary to ensure that autonomously man-

aged systems consistently contribute to the pro-

cesses and interests of other systems in SoS.

H28 S09 Support for connectivity

among heterogeneous envi-

ronments must be provided.

How connectivity among geographically dis-

tributed systems occurs must be identified both

for the means of communication and the proto-

cols used.

H29 S09 Emergent behaviors must

be represented in capability

composition schemes.

It is desired that the emergent behaviors are

known regarding the capabilities required by the

CS and their relationships.

H30 S09 Individual capabilities must

be validated.

Each CS provides a capability to SoS that must

be checked to see if it complies with SoS expec-

tations.

H31 S09 The design must anticipate

desired emergent behaviors.

Emerging behaviors necessary to fulfill missions

must be explicitly identified, allocated to the re-

spective CS responsible for them, and evaluated

frequently.

H32 S09 Emerging behaviors must be

assigned to CS capabilities.

Emerging behaviors necessary to fulfill SoS mis-

sions must be explicitly identified, assigned to the

respective CS responsible for them, and evaluated

frequently.

H33 S09 SoS capabilities must be con-

stantly analyzed and evalu-

ated.

The capabilities needed to fulfill the SoS missions

should be constantly analyzed and monitored by

those responsible.

H34 S09 An incremental development

and deployment strategy for

the SoS should be adopted.

The design process must embrace steps that allow

the incremental development of the SoS, promot-

ing and facilitating the dynamism of the architec-

ture.

H35 S09 SoS functions must be revised

as the system operates.

SoS dynamics and CS independence can lead to

problems in fulfilling the SoS mission over time.

H36 S09 Design decisions must be ex-

plicit in the SoS architecture.

During the design, decisions are made to build

the SoS architecture. It is necessary to document

these decisions.

Continue on next page

41

Heuristics for Systems-of-Systems Design

Table 4.3 – continued from previous page

ID Ref. Description Rationale

H37 S09 Design decisions must be de-

veloped and continually re-

fined.

The independence of CS in SoS can lead to

changes in its architecture. New architecture de-

cisions must be re-evaluated and recorded for bet-

ter SoS maintenance.

H38 S09 SoS scenarios must be devel-

oped and continually refined.

Scenarios in which SoS runs are important to ver-

ify its effectiveness in the context in which it op-

erates.

H39 S09 A strategy for dynamic inte-

gration must be provided.

CS may leave or join SoS at any time. It is neces-

sary to adopt mechanisms to minimize the impact

of acquiring or losing capabilities.

H40 S10 Weak emergent behaviors

must be identified at design

time.

Weak emergent behaviors are those that can be

identified at design time. They are not accidental

or produce any change in the behavior of the CS.

A “strong” behavior can not be predicted at the

design phase. It can usually be observed during

simulation or in operation.

This SMS aimed to identify heuristics to the design of SoS. The extracted heuris-

tics address SoS initiation, interoperability, characteristics of CS, and governance

issues in SoS. We also noted that the studies address mostly directed and acknowl-

edged SoS.

4.3 Focus Group

The focus group allowed us to collect data through interactions in a group of experts

and was conducted with planned discussions in order to capture the perceptions

regarding the 40 heuristics for SoS design extracted from SMS. Table 4.5 describes

the roles used in this focus group.

4.3.1 Planning

We followed the guidelines provided by Beck and Manuel (2008) and Zaganelli et al.

(2015). A set of questions was defined to guide the focus group discussions. Figure

4.2 shows focus group phases.

42

Heuristics for Systems-of-Systems Design

Table 4.4: Which types of heuristics can be applied and how heuristics were evalu-
ated.

ID Approach SoS type Evaluation
S01 Propose SoS-centric middleware ser-

vices to support the management and
execution of SoS in Smart Cities. Fur-
ther steps proposed to develop case
studies in order to validate and evaluate
solution.

Collaborative Not evaluated.

S02 Apply systems thinking and viewing
SoS in a sociotechnical context as ap-
proach. Heuristics are based on guar-
anteeing interoperability among CS.

Directed and
acknowledged

Case study in the health-
care system and smart home
healthcare.

S03 A basic set of architecting principles to
assist in SoS design. Refinements of
more general heuristics to produce rec-
ommendations.

All Not tested. Formal experi-
ment is not possible due the
fact that is not viable dupli-
cate complex systems aiming
tests.

S04 Discuss challenges in SoS architecture
using SoS-level and CS level, proposing
to maintain interfaces in both levels.

All Not evaluated.

S05 Propose principles to a functional archi-
tecture simulator in the context of SoS
engineering to define architecture.

Directed and
acknowledged

Not evaluated.

S06 Use a sociotechnical ecosystem ap-
proach to try to add longevity to the
SoS composition process.

Directed Not evaluated.

S07 Proposed a new model called SApHE-
SIA (SoS Architecting HEuriStIc based
on Agents) focusing on environment
and its dynamics, using criticality is a
metric.

Collaborative
and virtual

Simulation using two scenarii
to evaluate functional ade-
quation, efficiency, and ro-
bustness.

S08 An approach allows for the identifi-
cation of options capable of mitigat-
ing perturbations negatively impacting
SoS.

Directed and
acknowledged

Case study in maritime secu-
rity.

S09 A proposal of a “Meta-process for
SoS Software Architectures” (SOAR),
which supports the authoring of pro-
cesses to construct SoS software archi-
tectures.

Directed and
acknowledged

Qualitative survey with ex-
perts.

S10 Discuss lack of computational and sys-
tems engineering approaches to pre-
vent the engineering of emergent be-
haviors in SoS modeling and simulation,
proposing an approach to deal with this
issue.

All Use of cybernetics, systems,
control and network theories.

S11 Presents three architectural styles to re-
alize self-adaptation in SoS. Uses the
Same references to the heuristics in S03.

All Not evaluated.

Phase 1 - Scheduling and invitation

An email was sent with an invitation to participate with suggested dates and

times for the meeting.

43

Heuristics for Systems-of-Systems Design

Table 4.5: Focus group roles.

Role Description
Moderator The moderator is responsible for guiding discussions, promoting interaction

and the engagement of the participants, enabling the emergence of new ideas
about heuristics for SoS design (ZAGANELLI et al., 2015).

Participant The participant answers the focus group questions and participates in synergy
in the discussions that arise. The participants also suggests modifications and
improvements in the set of heuristics and the organization of the catalog.

Figure 4.2: Focus group phases.

Phase 2 - Introductory documents

Documents containing the first set of heuristics and the selected studies were sent

by email to the participants two days before the focus group to provide preliminary

knowledge to support discussions. A Google Meet link was created for the focus

group and was also sent by email.

Phase 3 - Presentation

After initial considerations and clarifications about the research and the expected

dynamics for the focus group, the document describing the 40 heuristics was pre-

sented.

Phase 4 - Discussions

The discussions were prompted by asking participants to answer these six specific

questions:

• Q1. Did you understand the formulation and use of the heuristics?

• Q2. Do you think that the heuristics are useful for SoS design?

• Q3. In which types of SoS can this heuristic apply to?

• Q4. Is the quality characteristic indicated for the heuristic consistent?

• Q5. Are there heuristics that can be combined with other heuristics?

• Q6. Are there heuristics that need to be applied in a specific order?

44

Heuristics for Systems-of-Systems Design

Phase 5 - Suggestions

Based on theoretical knowledge and practical experiences, participants contributed

with suggestions regarding heuristics.

Phase 6 - Analysis

After the discussions, the moderator organized the data obtained and conducted

a qualitative analysis to clarify how the object of study was perceived by the group

(ZAGANELLI et al., 2015).

4.3.2 Execution

We invited 6 people to participate and 4 accepted the invitation. Two participants

hold a Master’s degree and 2 were Ph.D students. In particular, the focus group

aimed to clarify the following points:

1. The importance of the SoS type for the design;

2. In which situations should a heuristic be applied or not;

3. The appropriate sequence of the heuristics;

4. Difference among design, simulation, and execution;

5. Heuristics viewed as means to support the SoS design.

The items are related to interdependencies among heuristics and intended to

respond to research question proposed to guide the focus group.

The participants noted that heuristics on interoperability standards specifica-

tion, standards catalog, and interface identification could be aggregated and placed

logically to support SoS design. However, such heuristics should come after the

more general ones, such as those that define the SoS goals and the development and

maintenance responsibilities.

The ideas raised in the focus group are presented below with a summary of the

questions and comments that arose during the discussions among the participants.

The idea of improving explanations on each heuristic was reinforced, aiming to

make it easier for the designer to understand and adopt the heuristics. This is

important to improve the designer’s engagement with the heuristics catalog.

45

Heuristics for Systems-of-Systems Design

The sequence for the design activities was again reinforced by participants: first,

define the type of SoS to be worked on and then concern other issues such as in-

teroperability. Besides this, questions were raised about the separation of heuristics

that were specific to SoS from those that were common to traditional systems.

The participants raised questions on the advantages and disadvantages of each

CS in participating in the SoS as stated in the H06 heuristic:

• “Whether the disadvantages of CS participation be mapped, or would it be a

concern of each respective stakeholder.”

• “Could be interesting to combine advantages and disadvantages in a single

heuristic.”

• “In this case, the heuristic could be formulated as identifying which stakehold-

ers participate in the SoS and what are the perceived advantages and disad-

vantages or which degree of quality is identified in the participation.”

• “Whether this is a designer’s responsibility or just a waste of time in design

phase.”

It was observed that heuristic H07 leads to the concept of software costs, which

is already a complicated topic for traditional systems, and it is not worth addressing

this in SoS design. Also, the perception of stakeholders on how their participation

happens when the SoS is executed, and so it is not possible to be done at design time.

Open architectures, as described in heuristic H09 seeking to facilitate SoS evolution,

can be understood as a choice of SoS engineers, but it could not be considered

mandatory. This is a very particular situation for each SoS being designed. The

general understanding of the group is that technology issues are not mandatory to

be addressed in SoS design.

The heuristic H10, which stated the definition of intermediate SoS forms to

facilitate gradual SoS evolution, is considered a significant concern. However, it is

impractical at design time because it was often impossible to predict how the SoS

evolves to construct this kind of roadmap with intermediate SoS forms.

Heuristic H11, stating the need to know which CS should be helped and which

CS should be abandoned, was considered very clear and practical, being related to

resilience and maintainability concepts for systems in general.

46

Heuristics for Systems-of-Systems Design

Defining interfaces already at design time (H12) is related to interoperability and

was previously worked in other heuristics statements and respective rationales that

mentioned communication standards, catalog of protocols used, data sets, etc. So

they should be combined with other heuristics that deal with those issues.

Participants noted that it is very complicated to provide incentive mechanisms

for CS’ participation in SOS at design time (H13). In addition, this concern is

already covered by the heuristics dealing with the benefits of participating in the

SoS for the CS and stakeholders.

Participants also noted that it is important to maintain uniformity to the terms

treated in the heuristics catalog. Although the content comes from several studies,

it is necessary to consistently use terms to avoid confusing readers. It is better to

use standardized vocabulary to refer to the respective concept or object. As an

example, one study deals with “independent subsystems”, which are, in fact, the

CS.

It was discussed that heuristics dealing with interoperability are frequently re-

peated in the heuristics extracted from different studies and should be revised and

combined to compose the final heuristics catalog. The same rationale should be

applied to the heuristics that deal with testing the CS capabilities.

Heuristics dealing with the identification of changes in CS can be interesting

when the designer team has good knowledge of how each CS works, but even so, it

is challenging to implement. According to the participants, the heuristic H16 could

be modified to deal with changes in CS capabilities, but yet would still be difficult

to identify this through an automated method or tool in the design phase.

Validation and verification proposed in the H21 heuristic have to be applied

to a well-defined object. Simply saying that there should be a concern for these

activities does not help the designer activities. Looking at the traditional software

perspective, these are well-defined activities. It would be better to investigate if any

issues must be resolved to define how these activities could be conducted in SoS

before this heuristic can be applied.

It is necessary to define appropriate metrics before defining and using criticality

in SoS, as stated in heuristic H22. Besides this, it is not easy to use this kind of

concept in SoS due to its intrinsic evolutionary characteristic.

47

Heuristics for Systems-of-Systems Design

It is necessary to define what is meant by disturbances in heuristic H23 properly.

Treating the disturbances as described in the three-step checklist is a very abstract

activity. It was suggested to separate this statement into two heuristics: (i) verifying

the points of disturbance and (ii) verifying the architectural alternatives to deal

with them. But in this case, this heuristic will be related more to reliability than to

interoperability as initially defined.

It was observed that self-regulation of the CS, as stated in the H24 heuristic,

shouldn’t be a designer’s concern. Only heuristics that deal with similar concepts

applied to SoS rather than CS can be used in the heuristics catalog.

It was noted that the design, not the solution architecture, should consider a

feedback policy for SoS operation. Heuristics 25 to 28 must be removed, as they are

directly linked to the intrinsic characteristics of SoS. The heuristic H29 is related to

SoS representation and not to SoS design.

The individual capabilities of the CS have to be validated as stated in heuristic

H30, but it would be necessary to define validation techniques, which in SoS is a

complicated task. It may be useful to check if it is possible to fit this type of activity

into a group of activities to create validation policies.

Participants noted that one of the main goals of the SoS project is indeed to

identify unwanted emergent behaviors, as stated in H31. It was observed that this

heuristic could be adjusted to place this type of behavior in the designer’s concerns.

It was noted that the designer would not analyze CS capabilities (H33) due to

analyzing and evaluating CS capability should not be done at design time. A better

strategy could be to create indicators at design time to make it possible to analyze

the SoS at runtime.

Defining an incremental development process, as stated in heuristic H34, is not

applicable to the SoS design as it was a broader activity during the whole SoS life

cycle, so this heuristic is not applicable to SoS design.

The heuristic H35 does not appear to be valid because there is no reason to

review SoS functions as it operates. It should be more useful to know whether there

is compliance or adherence of the CS’s capabilities to what is expected of them to

contribute to SoS fulfilling missions, but that is not what that heuristic says.

Representing design decisions in the architecture, stated in heuristic H36, have

48

Heuristics for Systems-of-Systems Design

already been addressed in previous heuristics.

Developing and refining design decisions as stated in heuristic H37 is not on the

set of the designer tasks and so must be excluded from this heuristics catalog for

SoS design.

It is observed that there is no way to handle scenarios in the SoS design men-

tioned in heuristic H38. It is not possible to point where failures will appear in

changing scenarios or how to address those issues at design time. The study S09

(GONÇALVES et al., 2015) does not appear to address the issue in the way this

heuristic was presented.

Providing a strategy for dynamic integration proposed in heuristic H39 would be

useful, but it couldn’t be possible to do this in practice and even more so at design

time. This heuristic could be compared to providing mechanisms to promote full

interoperability in SoS, which is already one of the grand challenges in SoS.

Listing undesirable emergent behaviors was already discussed in a previous H31

heuristic and can be combined with the H40 heuristic H40 aimed in representing

weak emergent behaviors. The text could be rewritten in a more objective way by

combining weak and undesirable emergent behaviors in a unique heuristic.

4.3.3 Results and Analysis

After the focus group, it was possible to adjust the set of heuristics, revising the

statements and respective rationales, combining some heuristics that deal with sim-

ilar purposes and removing from the set those heuristics that are not suitable for

SoS design.

The focus group discussions also made it possible to create a sequence in which

the heuristics should be applied, grouping them into five categories: initiation

heuristics (IN), constituent systems heuristics (CS), interoperability heuristics (IO),

emerging behaviors heuristics (EB), and monitoring heuristics (MO). Table 4.6 sum-

marize those categories.

With these categories and the adjustments made through the focus group analy-

sis, it was possible to build a refined version of the catalog of heuristics for the design

of SoS shown in Table 4.7, as well as to respond to the research question formulated

to guide the focus group, defining groups of processes and a logical sequence to apply

49

Heuristics for Systems-of-Systems Design

Table 4.6: Heuristics categories.

Category Description
Initiation (IN) Concern activities applicable right at the beginning of

the SoS design.
Constituent systems (CS) Concern activities of the phase of selection of the nec-

essary capabilities for the SoS, as well as which systems
can provide them.

Interoperability (IO) Concern activities that deal with how the CS commu-
nicate and what messages and data will be exchanged
among them to fulfill the SoS mission.

Emerging behaviors (EB) Concern activities to describe emerging behaviors that
can be identified already at design time, not requiring
SoS simulation or execution to be observed.

Monitoring (MO) Concern activities that shoud be planned to maintain
the SoS operation.

the heuristics.

Table 4.7: Refined Heuristics Catalog

ID Description Rationale

IN1 The design should clearly identify who

provides the necessary capabilities and re-

sources for the operation of SoS.

SoS depends on the synergy among sys-

tems that provide the necessary capabili-

ties for operation, being necessary to guar-

antee adequate management for this sup-

ply.

IN2 The design should clearly consider who is

responsible for the construction and op-

eration of SoS.

When funding is required for the SoS op-

eration, stakeholders should be informed

how and by whom it will be done so that

these issues are dealt with appropriately

at the right time.

IN3 The design should clearly identify who

benefits from SoS.

Every SoS is built and operates for a pur-

pose. It is important to identify who are

the beneficiaries of the activities or oper-

ation of SoS.

CS1 Define which capabilities are already

available and which should be imple-

mented in the CS for the construction and

operation of SoS.

The SoS design should foresee if there are

enough functionalities available in the CS

to collaborate with the SoS or if it is nec-

essary to implement new functionalities.

CS2 The individual capabilities of each CS

should be checked.

Each CS provides to SoS a capability that

should be checked if it conforms to what

is expected of it.

continue on next page

50

Heuristics for Systems-of-Systems Design

Table 4.7 – continued from previous page

ID Description Rationale

CS3 Design principles that generate the least

possible disruption to SoS operation

should be applied.

It is necessary to select which design al-

ternative generate less disruption during

the SoS operation, defining metrics that

make it possible to evaluate the identified

alternatives.

IO1 SoS coordination should ensure that each

CS can exchange and understand data

and messages exchanged among others.

It is necessary that the coordination of the

SoS maintains the set of communication

standards among CS in order to ensure

that each one can communicate with the

others when necessary to achieve the pur-

poses of SoS.

IO2 The interfaces of the CS should be defined

at design time.

The interfaces of a CS are a crucial factor

for the operation of SoS. They are points

where the designer can exert influence.

IO3 SoS coordination should ensure that the

policies for access and use of the capa-

bilities of each CS can be exchanged and

understood by the other CS.

It is necessary to ensure that each CS is

able to participate in an SoS, respecting

the access and use policies of the other

CS. The management and dissemination

of these policies is important due to in-

dependence characteristics of the CS and

the dynamic SoS architecture.

IO4 All data sets to be exchanged among CS

should be defined.

The specification of all the data sets to be

exchanged among CS should be sufficient

to use them to fulfill SoS missions.

EB1 Emergent behaviors should be allocated

to the CS requirements.

The emergent behaviors necessary to ful-

fill SoS missions should be identified and

explicitly associated with the respective

CS or refinements responsible for them.

EB2 Weak emergent behaviors should be iden-

tified at design time.

Weak emergent behaviors are those that

can already be identified in the design

phase, not requiring SoS simulation or ex-

ecution to be observed.

continue on next page

51

Heuristics for Systems-of-Systems Design

Table 4.7 – continued from previous page

ID Description Rationale

MO1 SoS missions should be periodically re-

vised as the system evolves.

It is necessary to frequently monitor the

fulfillment of the SoS missions since the

dynamics of the SoS and the independence

of the CS can bring problems to SoS over

time.

MO2 The SoS design should include a feedback

policy for the operation of the SoS.

It is necessary to monitor the SoS to de-

tect problems during its operation and

define the actions required to deal with

them.

MO3 The interface patterns that emerged in

the evolutionary process should be iden-

tified.

The evolutionary process may generate

the need to use new communication stan-

dards or to update the existing standards.

It is necessary to maintain the set of stan-

dards used as the evolution of the CS and

SoS takes place, generating a roadmap for

the process.

In the next section, the evaluation for this heuristic catalog was presented from

a survey with SoS experts. The survey had closed questions regarding the heuristic

and open questions for general suggestions and comments from the participants.

4.4 Survey

After the focus group, a survey was conducted to evaluate the refined set of heuris-

tics. The survey was based on a catalog of heuristics produced conducting an SMS

with further refinement in the focus group dynamics described in the previous sec-

tion. The survey aimed to evaluate the applicability of the heuristics catalog re-

garding SoS design from the perspective of experts in the SoS context.

4.4.1 Planning

We chose to invite the researchers that formed the scientific committee of SESoS/WDES

20214 as SoS experts to evaluate the heuristics catalog for this evaluation step. The

4http://sesos-wdes-2021.icmc.usp.br/Committee.php

52

Heuristics for Systems-of-Systems Design

researchers’ emails were collected from personal websites or the websites of the de-

partments of the respective universities.

The heuristics were grouped into the previously proposed categories of initiation

(IN), constituent systems (CS), interoperability (IO), emergent behaviors (EB), and

monitoring (MO). For each heuristic, the rationale to apply and an example of a

situation where it can be applied were provided.

A data collection form was produced containing the objective of the study, how

the set of heuristics was produced, and questions to evaluate each heuristic with a

statement and example of use. A pilot was conducted with an SoS expert to correct

and adjust the invitation, and the data form before sending an invitation to the

population of researchers selected. Appendix I.1 shows the complete data collection

form.

The questionnaire was built into three sections. The first contained the free

and clear term to participate in the research, while the second section contained

questions about the participant’s profile. The third section had objective questions

for each of the 15 heuristics to be evaluated with the agree, neutral, and disagree

options (CHUERI, 2021) and also a field for comments and suggestions about the

heuristic being evaluated if necessary. At the end of the questionnaire, an open

question was presented for general comments and suggestions.

4.4.2 Execution

In total, we invited 31 researchers, and 15 responded to our questionnaire. Figure

4.3 describes the academic profile of the participants and their familiarity with the

SoS theme.

From the graphs presented above, it can be seen that 93.3% of respondents were

researchers or professionals with a Ph.D., the majority with good or very good

knowledge of SoS (33.3% in both cases), which makes the survey’s population very

qualified and the responses very representative.

4.4.3 Results

For each heuristic, a question was proposed to know if the participant agreed, was

neutral, or disagreed with the heuristic statement and if they had any comments

53

Heuristics for Systems-of-Systems Design

Figure 4.3: Profile of the respondents.

about the statement formulation or suggestions to improve the heuristic statement.

Figure 4.4 shows the respective percentages for each answer. The first bar chart

represents the responses considering all 15 respondents (group 1), while the bar

chart on the right represents only the responses of 10 researchers who declared

having good or very good knowledge of SoS (group 2).

The responses and comments were reviewed for each of the catalog’s heuris-

tics. The acceptance criterion for the heuristics was greater or equal to 50% of the

agreement rate in the two groups. Some heuristics had to be rewritten, considering

researchers’ comments. Also, according to the researchers, the SoS type of coordi-

nation was raised as an important factor when evaluating the applicability of each

heuristic.

Heuristic IN1 - The design should clearly identify who provides the necessary

capabilities and resources for the operation of the SoS.

Most (80% in group 1 and 70% in group 2) agreed with the heuristic. From the

answers and comments, it can be concluded that the heuristic was well mapped,

although it is not regarded as valid for virtual SoS, where there is no type of co-

ordination. Also, from the comments, it is noted that the understanding of what

a heuristic is can vary depending on the researcher, and it is necessary to describe

better the concept of heuristics used in this work.

Another interesting point brought up in the comments drew attention to the

fact that this heuristic holds at the design phase, but when SoS begins operation,

properties may appear that are not initially foreseen by designers. It may be diffi-

54

Heuristics for Systems-of-Systems Design

Figure 4.4: Responses to the survey.

cult for this heuristic to remain valid over time while the SoS operates and evolve.

Although it is important to know who provides the resources for the functioning of

SoS, it is necessary to take into account that there will be unforeseen issues along

its evolution cycle since SoS is never fully ready.

IN1 was accepted, applied only to directed and acknowledged SoS types.

Heuristic IN2 - The design should clearly consider who is responsible for the

construction and operation of the SoS.

Respondents agreed with this heuristic in the following proportion: 47% in group

1 and 50% in group 2. It can be noted from the comments that a highly evident

characteristic is the unpredictability in the composition and evolution of the SoS.

One of the comments reported the unpredictability of the applications developed

and would be part of the Apple store, bringing a parallel with software ecosystems.

The idea is that many events occur in a very automatic way in SoS.

A question about the type of SoS coordination was raised again, based on the

fact that the different configurations that an SoS can assume can lead to behavior

not foreseen by the designers. For example, in a convoy of autonomous vehicles,

the decision of which vehicle goes ahead is made based on many factors like fuel

consumption, routes, air resistance, and accident risks, resulting in unpredictable

55

Heuristics for Systems-of-Systems Design

behaviors due to the complexity of all car systems having to work together.

IN2 was accepted, applied only to directed, acknowledged, and collaborative

SoS types only.

Heuristic IN3 - The design should clearly identify who benefits from SoS.

A total of 67% of group 1 and 80% of group 2 agreed with heuristic IN3. The

participants’ observations show the dynamic scenario of the SoS, with the change in

who benefits from it throughout its evolution, and the application of this heuristic

is more appropriate to targeted SoS. The type of SoS coordination is treated again

as mandatory for the application of the heuristic.

The comments showed that it might not be possible to identify who benefits from

SoS. Furthermore, it is also necessary to understand if the benefit is at the business

level, as in the case of a CS, or if it is a social benefit, as in the case of those who

are not directly connected to the SoS.

IN3 was accepted, applied only to directed and acknowledged SoS types.

Heuristic CS1 - Define which capabilities are already available and which should

be implemented in the CS for the construction and operation of SoS.

The major part of researchers agreed with this heuristic (87% in group 1 and

80% in group 2). Despite the high degree of agreement with this heuristic, comments

were made about whether this statement is a heuristic or an activity for SoS design,

reinforcing the need to define the adopted heuristic concepts better.

Another important question was about the choices of which capabilities exist,

and therefore susceptible to reuse, and which will need to be developed. It noted that

choosing to reuse available capabilities rather than constructing new ones should be

evaluated by designers as these choices can lead to poor performance of the built

SoS.

CS1 was accepted, applied only to directed, acknowledged, and collaborative

SoS types.

Heuristic CS2 - The individual capabilities of each CS should be checked.

For this heuristic, 80% of group 1, and 80% of group 2 agreed with the statement.

Despite being well evaluated, this heuristic was criticized in the comments for not

being an objective evaluation form, as informed in the definition of heuristic at the

beginning of the questionnaire. In addition to the already mentioned need to better

56

Heuristics for Systems-of-Systems Design

define what heuristic for this work is, it is also necessary to better define what is

considered capability, despite the term being well known and applied in SoS.

CS2 was accepted, applied only to directed, acknowledged, and collaborative

SoS types.

Heuristic CS3 - Design principles that generate the least possible disruption to

SoS operation should be applied.

For this heuristic, 80% agreed in group 1, and 80% agreed in group 2. Despite

the high degree of agreement, it was suggested to mention which possible topologies

an SoS can assume to decide on the most stable one. It was also mentioned that

this heuristic is essential for critical systems, which may lead to further classification

when considering the application of this heuristic. Once again, the importance of

defining the type of coordination existing in the SoS was mentioned.

CS3 was accepted, applied only to directed SoS types.

Heuristic IO1 - SoS coordination should ensure that each CS can exchange and

understand data and messages exchanged among CS.

The rate of agreement for this heuristic was 80% in group 1 and 70% in group

2. The SoS coordination issue was brought up again in the comments, and it is

important to check how to address it in the heuristics catalog. It was suggested

to split this heuristic into two parts: one to understand the data and the other to

understand the messages, which should make the statement clearer.

IO1 was accepted, applied only to directed and acknowledged SoS types.

Heuristic IO2 - The interfaces among the CS should be defined at design time.

The rate of agreement for this heuristic was 60% in group 1 and 50% in group 2.

Although half of the participants in group 2 agree with this heuristic, this was one

of the most explicit found in the literature. The characterization of the type of SoS

coordination was again identified as essential for the application of this heuristic,

needing to think about additional layers for connectivity in virtual SoS, not necessary

for directed SoS. SoS coordination issues should be addressed in the review of the

heuristics catalog.

IO2 was accepted, applied only to directed SoS types.

Heuristic IO3 - SoS coordination should ensure that the policies for access and

use of the capabilities of each CS can be exchanged and understood by the other

57

Heuristics for Systems-of-Systems Design

CS.

For this heuristic, 60% agreed in both groups 1 and 2. Besides this, 40% of the

group 2 participants disagree with this heuristic, which is a quite negative evaluation.

Access policies were recognized as essential to help valuable data protection, but

they were pointed out as unimportant for other classes of services like the internet,

which the services work perfectly without knowing how each other works. Comments

suggest that this heuristic is more adherent to directed SoS, not being possible to

apply it to virtual SoS.

IO3 was accepted, applied only to directed and acknowledged SoS types.

Heuristic IO4 - All data sets to be exchanged among CS should be defined.

Only 33% of group 1 and 20% of group 2 agreed with this heuristic. According

to the comments, applying this heuristic may restrict emergent properties in the

SoS. Moreover, CS in virtual SoS can completely ignore being part of the system,

making it challenging to define their data sets. Another question was whether data

sets or data formats should be defined. IO4 was not accepted to be applied to any

of the SoS types. For this reason, this heuristic was excluded from the final catalog.

Heuristic EB1 - Emerging behaviors should be allocated to the CS requirements.

Respectively, 73% and 80% agreed with this heuristic in group 1 and group 2.

However, it was commented that the term ”emergent behavior” was not defined in

the initial guidelines, and there was doubt whether the heuristic was saying that the

behaviors would be observed or should be indicated in the CS requirements.

EB1 was accepted, applied only to directed SoS types.

Heuristic EB2 - Weak emerging behaviors should be identified at design time.

Respectively, 53% and 60% agreed with this heuristic in group 1 and group 2. A

comment was made that this heuristic is more easily applied at design time than at

the execution time, which, by the way, coincides with the proposal of this catalog.

It was also indicated to apply this heuristic in a non-mandatory way.

EB2 was accepted, applied only to directed SoS types.

Heuristic MO1 - SoS missions should be periodically revised as the system evolves.

For this heuristic, 73% and 70% agreed in group 1 and group 2. A comment

shows an interpretation problem about whether the heuristic is an action that must

take place to review the missions or whether it is a behavior to be observed as the

58

Heuristics for Systems-of-Systems Design

SoS evolves. Other participants mentioned that this heuristic should be a quality

criterion for SoS, and it is important to monitor it continuously. However, it was

asked how to measure the mission accomplished, what could be used as evidence,

and what is the period for these revisions.

MO1 was accepted, applied only to directed and acknowledged SoS types.

Heuristic MO2 - The SoS design should include a feedback policy for the operation

of the SoS.

Respectively, 73% and 80% agreed with this heuristic in group 1 and group 2.

The only comment made was that it could be challenging to provide this type of

feedback. This situation can lead to further detailing activities beyond the SoS

design, such as actions required when problems are detected.

MO2 was accepted, applied only to directed and acknowledged SoS types.

Heuristic MO3 - The interface patterns that emerged in the evolutionary process

should be identified.

Group 1 agreed in 67%, and group 2 agreed in 70% with this heuristic. Again

the SoS coordination is mentioned as a key factor to make it possible to apply the

heuristic. Besides this, a metric was considered an important factor to make this

heuristic applicable.

MO3 was accepted, applied only to directed, acknowledged and collaborative

SoS types.

Table 4.8 summarizes the suitability of each heuristic by type of SoS coordination,

taking into account the observations made by the survey participants.

4.5 Limitations

The SMS was an efficient tool for extracting the heuristics but some limitations could

be observed. Using the acronym “SoS” in the search string caused the retrieval of

studies unrelated to systems-of-systems. Studies with terms like “start of season”,

“sum of squares”, “silicon on solid”, “swedish obese subjects” among others, were

retrieved which caused unnecessary additional work. On the other hand, other terms

like “guidelines” came up during focus group discussions and in survey comments

and could be included in the search string, bringing additional studies retrieved in

the SMS.

59

Heuristics for Systems-of-Systems Design

Table 4.8: Classification of heuristics for each type of SoS coordination.

ID Heuristic DIR ACK COL VIR
IN1 The design should clearly identify who provides

the necessary capabilities and resources for the
operation of the SoS.

Valid Valid Invalid Invalid

IN2 The design should clearly consider who is respon-
sible for the construction and operation of the
SoS.

Valid Valid Valid Invalid

IN3 The design should clearly identify who benefits
from SoS.

Valid Valid Invalid Invalid

CS1 Define which capabilities are already available
and which should be implemented in the CS for
the construction and operation of SoS.

Valid Valid Valid Invalid

CS2 The individual capabilities of each CS should be
checked.

Valid Valid Valid Invalid

CS3 Design principles that generate the least possible
disruption to SoS operation should be applied.

Valid Invalid Invalid Invalid

IO1 SoS coordination should ensure that each CS can
exchange and understand data and messages ex-
changed among CS.

Valid Valid Invalid Invalid

IO2 The interfaces among the CS should be defined
at design time.

Valid Invalid Invalid Invalid

IO3 SoS coordination should ensure that the policies
for access and use of the capabilities of each CS
can be exchanged and understood by the others.

Valid Valid Invalid Invalid

IO4 All data sets to be exchanged among CS should
be defined.

Invalid Invalid Invalid Invalid

EB1 Emerging behaviors should be allocated to the CS
requirements.

Valid Invalid Invalid Invalid

EB2 Weak emerging behaviors should be identified at
design time.

Valid Invalid Invalid Invalid

MO1 SoS missions should be periodically revised as the
system evolves.

Valid Valid Invalid Invalid

MO2 The SoS design should include a feedback policy
for the operation of the SoS.

Valid Valid Invalid Invalid

MO3 The interface patterns that emerged in the evo-
lutionary process should be identified.

Valid Valid Valid Invalid

DIR=directed, ACK=acknowledged, COL=collaborative, and VIR=virtual.

One of the advantages of the focus group is that it offers research participants the

opportunity to generate ideas together, creating new insights on a particular subject.

Although a small number of participants provides more in-depth discussions on a

specific topic, it could be interesting to promote a focus group with more participants

to enrich the discussions and increase the ideas generated about using proposed

heuristics.

The survey is an extremely useful tool for research. However, particularly in this

research, finding practitioners and researchers to respond to surveys was difficult

due to the required background knowledge. In addition, there are other barriers,

such as respondents considering invitations as unwanted email messages, such as an

60

Heuristics for Systems-of-Systems Design

invasion of privacy or “junk mail,” leading to a low response rate.

4.6 Final Remarks

In this chapter, we extracted, refined, and evaluated the heuristics. The combined

procedures of an exploratory study to initially understand SoS concerns, an SMS to

find and extract heuristics for SoS from the literature, the organization of the findings

through the focus group, and the final evaluation of the heuristics by experts made

it possible to build the first version of the heuristics catalog grouped in categories,

suggested as a sequence of tasks for the designer.

This SoS heuristics catalog can help designers anticipate problems and concerns

at design time, making it possible to mitigate risks before building and operating

the SoS. Resources and functionalities can be planned, and building decisions can

be made, taking into account a more detailed scenario.

In order to verify how the heuristics can be applied in practice, a tool for SoS

modeling was designed and built using the mission model notation of the mKAOS

language. The next chapter details the design, construction, and evaluation pro-

cesses of this tool.

61

Chapter 5. Modeling Tool

In this chapter, we describe the technological contribution of the research to assist

in the design of SoS through the use of part of the constructed heuristics catalog.

Section 5.1 brings the introduction of this chapter; in Section 5.2 details the require-

ments for the tool construction; Section 5.3 shows the tool implementation process;

in the Section 5.4 the tool evaluation process is presented; Section 5.5 shows the

limitations for this work and Section 5.6 present the final remarks.

5.1 Introduction

The studies described in Chapters 3 and 4 made it possible to construct a heuristic

catalog that can be used to help in SoS design. In order to verify how the heuristics

can be used in practice, a graphical tool was built that could help users deal with

issues that affect SoS even before its construction,

The complete set of heuristics catalog was not implemented in this tool. Some

of the heuristics are suitable to be applied to the SoS at design time, being feasible

to be used until the beginning of the operational phase of an SoS, but not in the

subsequent phases. For example, the heuristic MO1 “SoS missions should be peri-

odically revised as the system evolves”, and the heuristic EB1 “Emerging behaviors

should be allocated to the CS requirements” could only be applied after an SoS

begins operating.

We named this tool mKAOS Studio Lite, inspired by the mKAOS Studio devel-

oped by the ConSiste research group at Federal University of Rio Grande do Norte

1. This chapter describes the requirements defined for this tool, its proposal, how it

was implemented, and how it works in practice.

1https://www.facebook.com/consiste.ufrn/

62

Heuristics for Systems-of-Systems Design

5.2 Requirements

The objective of this section is to elicit requirements for the creation of the mKAOS

Studio Lite, which is aimed to assist SoS design. The tool should provide a better

understanding of how the system works, who is engaged in supplying resources and

capabilities, and what the impacts are for SoS design decisions.

Requirement #1 (R1): The tool should use a proper SoS modeling nota-

tion.

The use of suitable notation for modeling SoS, which appropriately and clearly

represents the interrelationships involved in the SoS, can help in SoS design un-

derstanding. Due to the dynamics and characteristics of SoS, we chose to use the

mKAOS (SILVA; BATISTA, et al., 2015b) mission model notation that can repre-

sent the interrelationships among the CS and the missions that an SoS fulfills.

Requirement #2 (R2): The tool should use widespread technology.

Using widely available technologies can help in the success of the tool dissemi-

nation. The mKAOS Studio tool was produced using the Java language 2 and the

Eclipse tool 3, both widely used in industry. The Java language, despite its recog-

nized robustness for industrial applications, can present incompatibility problems

among its various versions (STEIJGER, 2008), which can make its use complicated

in several companies with different technological infrastructures.

The Eclipse tool is one of the most used by the industry specialized in software

development, providing not only functionality for managing and editing source code

but also providing a vast number of plugins to perform other tasks such as systems

modeling software simulation and even network packet analysis. However, Eclipse

is not suitable for managers but for developers. Eclipse has high entry barriers such

as learning curve, complexity in configuration and use, performance issues, and lack

of documentation (KIRTLEY et al., 2008).

Requirement #3 (R3): The tool should use standard interface.

Using available tools and technologies installed by default for most user com-

2https://www.java.com/pt-BR/about/
3https://www.eclipse.org/

63

Heuristics for Systems-of-Systems Design

puters can help in the tool use. According to REES (2002), the interface used by

modern browsers brings a series of advantages such as:

• Working natively with XML4 content;

• Ease of use in processing information for communication via firewalls;

• Encapsulating service protocols such as Simple Object Access Protocol (SOAP)5

and Unified Distributed Data Interchange (UDDI)6; and

• Dynamic content based on a Document Object Model (DOM) 7 which allows

objects manipulation using script languages like ECMAScript8.

Requirement #4 (R4): The tool should guide the user through the model-

building process.

The tool should follow the evolution of the model construction, guiding the

user in making the right connections among elements of the diagram, alerting to

inconsistent links such as a CS providing another CS or a capability in the diagram

that is not provided by any CS.

Requirement #5 (R5): The tool should use heuristics to evaluate the

produced model.

The objective of the catalog of heuristics is to assist in the design phase of SoS

projects, serving as rules for an objective form of evaluation, without prior knowledge

of SoS goals. The application of the heuristics to verify the model must take into

account the order of application of the heuristics, the type of SoS coordination, and

the properties of each represented element.

Requirement #6 (R6): The tool should allow remote view of model at-

tributes.

As an additional requirement, to provide model interoperability with other tools.

The proposal is that automated mechanisms or remote users can know and interact

4https://www.w3.org/TR/xml/
5https://www.w3.org/TR/soap/
6https://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
7https://dom.spec.whatwg. org/
8https://www.ecma-international.org/publications-and-standards/standards/ecma-262/

64

Heuristics for Systems-of-Systems Design

on-the-fly with the model being designed in order to point out issues to be further

addressed, propose improvements or solutions for the architecture, or address issues

other than design ones.

5.3 Implementation

The mKAOS Studio Lite tool is based on two modules: a first module that runs

on the client that operates the graphical interface for building SoS diagrams and a

second module that runs on the server, storing a synchronized version of the model

being built on the client and manages a queue of commands that can be sent to the

client by a third party with access to an API. Figure 5.1 summarizes messages being

sent among server, client and external inspector.

Figure 5.1: mKAOS Studio Lite architecture.

For the server-side tool implementation, an environment with Apache web server,

MySQL database, and PHP script language was configured. The database maintains

a table with the attributes of diagram elements as the user builds the diagram.

Synchronization is performed through a web service called by the client interface

every 30 seconds. Also on the server-side, a mechanism was implemented to allow

people to send commands remotely to the model, allowing collaboration in the model

being drawn in real-time. This remote functionality is implemented through a queue

of commands that are processed and sequenced on the server and then sent to the

client.

65

Heuristics for Systems-of-Systems Design

The user interface uses the web browser as a client and is implemented with

HTML59 language specification, cascade style sheets (CSS), and JavaScript libraries.

The tool uses the network module from the vis.js10 library to implement a network

diagram with nodes and edges that are customized in shapes, contours, and colors to

represent the elements CS, refinements, missions, and refinement and responsibility

links that correspond to the elements used in the mKAOS notation, meeting the

requirements R1 and R4.

The tool’s interface also uses an event and object model operated with the aid

of the jQuery library 11, which also enables asynchronous communication among

client and server, using the Ajax protocol (GARRETT et al., 2005). This feature

runs natively on all modern browsers without the need to install additional software,

which meets R2 and R3 requirements.

The Sweetalert212 JavaScript library was used aiming to improve the accessibility

of the user interface. The JavaScript libraries used and their respective functionali-

ties were summarized below:

• jQuery. It is used to manipulate user interface elements such as forms and

buttons as well as to make text input validation;

• vis.js. A browser-based dynamic visualization library that utilizes HTML5

canvas element functionality and facilitates manipulation and interaction with

dynamic data; and

• Sweetalert2. A library that replaces the JavaScript native modal warning

and error dialog windows, following the WAI-ARIA13 framework to improve

accessibility in web applications.

The process of applying heuristics to check the model being designed uses the

properties of the elements. The model provides visual signaling when it is necessary

to provide some data for the elements, so the nodes are only outlined when there

is no data provided and are filled with the respective node type color when the

mandatory data is provided.

9https://html.spec.whatwg.org/multipage/
10https://visjs.org/
11https://api.jquery.com/jquery.ajax/
12https://sweetalert2.github.io/
13https://www.w3.org/TR/wai-aria/

66

Heuristics for Systems-of-Systems Design

The “Check Model” routine was created to check the model, which will be acti-

vated at any time from the beginning of the diagram drawing. The “check model”

button triggers this routine by doing a complete SoS check at two levels. At the first

level, which also meets requirement R4, it checks whether the designed model meets

the rules on minimum elements to be observed in an SoS model using mKAOS no-

tation, informing the user what must be done taking into account the current stage

of the model. Thus, the suggestions provided are gradually refined as the drawing

progresses. Examples of rules used during drawing are:

• There are no SoS without at least one mission;

• There are no SoS without CS; and

• There are no SoS without the refinement of capabilities.

On the second level, the “check model” routine uses heuristics to verify the model

and provide feedback to the user. The verification of heuristics uses the assigned

properties and relationships among elements to present a report on the issues to be

addressed in the design, meeting requirement R5. The heuristics used in the model

check are:

• Heuristic IN1 - The design should clearly identify who provides the necessary

capabilities and resources for the operation of the SoS.

• Heuristic IN2 - The design should clearly consider who is responsible for the

construction and operation of the SoS.

• Heuristic IN3 - The design should clearly identify who benefits from SoS.

• Heuristic CS1 - Define which capabilities are already available and which need

to be implemented in the CS for building and operating the SoS.

• Heuristic CS2 - The individual capabilities of each CS should be checked.

• Heuristic IO1 - The interfaces among the CS should be defined at design time.

• Heuristic MO1 - SoS missions should be periodically revised as the system

evolves.

67

Heuristics for Systems-of-Systems Design

• Heuristic MO2 - The SoS design should include a feedback policy for the SoS

operation.

Some heuristics from the catalog constructed in Chapter 4 are not used in this

tool. The heuristic CS3 was not implemented because it depends on the definition

of a set of design principles to be applied to SoS operation, which is not the scope of

this study. The heuristics IO2 and IO3 are only applicable from the early phases of

SoS construction. The heuristics EB1, EB2, and MO3 are not included in the tool

since emergent behaviors and novel interface patterns can only be seen after SoS

begins to operate, as a part of the SoS evolutionary process. A summarized snippet

with some heuristics is presented in Appendix II.1 for the “check model” routine.

5.4 Evaluation

The evaluation process of the mKAOS Studio Lite tool was carried out through a

feasibility study. The tool produced using the catalog of heuristics and the mKAOS

notation aimed at helping in Sos design. This graphical tool allows professionals to

design a SoS in an interactive process, showing where is a lack of information that

should be provided to improve the chances of success of the designed SoS. With the

objective of evaluating mKAOS Studio Lite, we conducted a feasibility study using

part of the Technology Acceptance Model (TAM) (DAVIS, 1993).

5.4.1 Feasibility study

According to SPINOLA et al. (2008), the use of evidence provided from experimen-

tal studies allows the characterization of a technology before its adoption in software

projects. We conducted a feasibility study with a series of practical activities in SoS

design using the tool. To do this, a series of tasks and a questionnaire were proposed

to a group of developers and system engineers.

According to Polanĉiĉ et al. (2010), TAM has the advantage of being focused

specifically on information technologies. The questionnaire was produced with part

of the TAM (DAVIS, 1993) was applied to the group to verify the viability of the

mKAOS Studio Lite. The questions derived from TAM were formulated to evaluate

the ease of use, and the usefulness of the tool (SANTOS, 2016).

68

Heuristics for Systems-of-Systems Design

Planning

A study was planned to evaluate the tool, verifying how professionals in the area

of software systems of a company evaluate the usability and usefulness of the tool

to model an SoS in a proposed characterization. A script was generated with the

basic concepts of SoS and with explanations for understanding the context in which

professionals would work in modeling using the tool. The document drawn up for

this purpose can be found in Appendix III.1.

In addition, a questionnaire was generated using TAM to address why users

accept or reject mKAOS Studio Lite, using two concepts: (i) perception of ease

of use; and (ii) perception of usefulness. This questionnaire had four questions

related to the ease of use and four questions related to usefulness, both using the

Likert scale. Three more open questions are added asking about (i) the positive and

negative aspects perceived, (ii) suggestions for improvements to the tool and the

set of heuristics, and (iii) general suggestions, difficulties and additional comments

about the tool and the study as a whole. The survey model is in Appendix III.3

and the questions are presented in Table 5.1.

A pilot was carried out with a Master’s student in order to adjust and correct

problems in the research instruments. In this pilot, necessary adjustments in the text

were detected, such as the need to incorporate more concepts on SoS and suggestions

to modify the evaluation questionnaire, such as transforming the questions into

statements in the case of the first 8 questions where there was the application of the

Likert scale (Totaly agree, Agree, Neutral, Disagree, and Totaly disagree).

Execution

Fifteen professionals from the institution were invited to participate in the study,

of which 7 accepted the invitation. Each participant received instructions by email

containing the study proposal, the informed consent term form with the conditions

for participation, an introduction to SoS and modeling using the mKAOS notation.

Individual meetings were scheduled to conduct the study with each participant

via videoconference. During each meeting of approximately 1 hour, the following

activities were carried out:

69

Heuristics for Systems-of-Systems Design

Table 5.1: Questions derived from TAM model to evaluate the tool.

Question Description Dimension
Q1 It was easy to learn how to use the tool. Ease of use
Q2 I was able to use the tool the way I wanted. Ease of use
Q3 I understood what was happening during the interaction

with the tool.
Ease of use

Q4 I was able to perform tasks easily using the tool. Ease of use
Q5 I believe that using the tool with heuristics was useful to

represent the SoS in the proposed situation.
Usefulness

Q6 Using the tool allowed us to understand how the CS are
related and at which points there may be problems to
achieve the global SoS mission.

Usefulness

Q7 The use of heuristics in the tool improved my performance
in performing the proposed tasks.

Usefulness

Q8 Using the tool supports IT management activities. Usefulness
Q9 In your opinion, were positive or negative aspects of using

the tool identified? If yes, which one(s)?
(Free text)

Q10 Do you have any suggestions for improving the tool or
applying the heuristics? If so, please specify it.

(Free text)

Q11 This space is reserved for any additional comments (dif-
ficulties, criticisms and/or suggestions) regarding this
study.

(Free text)

• Some clarifications were given on the diversity and complexity of systems in

the modern world and how SoS happen in this context. It was explained how

the SoS differs from other complex systems and about the managerial and

operational independence of the CS. In this phase, the concept of heuristics

used in the study was presented, as well as a summary of the process for

compiling the set applied to the tool;

• After the clarifications, the tool was presented through an interactive script

with a step-by-step on how to model an SoS using an example situation. At

each stage, the “Check Model” functionality was used to show how the tool

was intended to guide the users in the construction of the SoS model;

• A hands-on session was conducted with user trying the tool, being guided

in case of some feature misunderstanding and asking general questions. A

tutorial integrated to the system was presented, containing concepts for SoS

and heuristics, an example of SoS model, a description of the interface and

each of the elements of the tool, a roadmap for building a SoS model and the

statement and the rationale for the heuristics evaluated by the tool; and

• Finally, the content, purpose, and confidential nature of the survey were pre-

70

Heuristics for Systems-of-Systems Design

sented, explaining the purpose of each question and providing the link for com-

pletion. The orientation given for the participant to spend around one week

testing the tool before responding to the survey is presented in Appendix III.2.

At the end of the tool utilization period, another individual meeting was sched-

uled to resolve any remaining doubts and provide further clarification for the study if

necessary, ensuring that the participant could fill the survey. The tutorial produced

for the tool is presented in Appendix II.2.

Results

The participants were characterized as follows according to their professional profile:

the major part of participants are in developer positions (71,4%), have more than

ten years of experience in information systems (71,4%), and have a Master degree

education (57,1%). Figure 5.2 shows all data about the professional profile.

Figure 5.2: Participants experience, position and education.

From the group of participants, 28.6% indicated a good knowledge and 14.3% a

very good knowledge in system modeling, totaling only 42.9% of respondents. Only

14.3% of the participants indicated an average knowledge of SoS, and the rest stated

poor or non-existent knowledge on the subject.

In the ease of use dimension questions set, only one user (14%) informed that

they disagree from Q3, and all others informed they agree or totally agree. In

usefulness dimensions, one user (14%) informed that they disagree with the Q6, Q7,

and Q8, and all others informed they agree or totally agree. Figure 5.4 summarizes

the responses in the 2 dimensions.

71

Heuristics for Systems-of-Systems Design

Figure 5.3: (A) Modeling knowledge and (B) SoS knowledge of participants.

Figure 5.4: TAM model questions.

5.4.2 Defects and improvements

Participants noticed failures in operations and points where it is possible to improve

mKAOS Studio Lite. Some of these issues could be corrected and implemented, so

the modifications are incorporated in the final version of the tool. Appendix III.4

shows all participants answers. As general positive points in Q9, Q10, and Q11 the

participants pointed out the following:

• The tool allows observing weaknesses in the SoS when there is some failure in

the CS represented in the model notation;

• The use of symbology with a light background to indicate lack of properties;

• Tool prevents impossible connections between elements; and

• Generated model in JSON format using the QR-CODE link can be useful for

further analysis.

72

Heuristics for Systems-of-Systems Design

As negative points with the possible actions to be implemented are showed in

Table 5.2. Some of the errors could be corrected, some suggestions are marked to

be evaluated in next versions.

Table 5.2: Questions Q9 Q10 and Q11 errors and suggestions.

Question Description Status
Q9 Delete option is not clear. DEL key implemented
Q9 Canvas height dimension is too small. Canvas height increased
Q9 System properties could be mentioned in the tu-

torial.
Future work

Q9 Q10 Documentation can be improved in the concep-
tual aspect

Future work

Q9 SoS properties could belong to canvas. To be evaluated
Q9 Q10 Sometime item placed outside viewport when cre-

ated.
To be evaluated

Q10 Icons for available and checked missions To be evaluated
Q10 Q11 Exclusive gateway icon reminds a lot of Cancel or

Delete buttons
To be evaluated

Q10 CS interfaces explicit in diagram To be evaluated
Q10 Undo button Future work
Q10 Save the model to continue the work Future work
Q10 Use of AI to apply heuristics To be evaluated
Q10 Possible interfaces registration Future work
Q10 Remove debug alerts Done
Q10 Gateway icon not transparent Done
Q10 Error and warning heuristics categories To be evaluated
Q11 Capability without CS not checked Future work
Q11 Label and Title confusing Future work

5.5 Limitations

This tool does not implement any integration with other modeling tools, nor does

it implement elements of the other five diagrams of mKAOS (SILVA, E., 2015), and

it may be necessary to address these issues in the future evolution of this research.

This feasibility study for the tool was conducted in an institution where it was

possible to characterize and model an SoS. Looking at the percentages pointed out

about knowledge in SoS, we see that the SoS approach of using interoperability be-

tween independent systems to build new systems is not a recognized approach among

the technicians and managers of the institution, so the concepts and advantages of

making such an arrangement are not in the everyday work of the institution’s profes-

sionals. Also, a little less than half of the participants stated a good and very good

knowledge of systems modeling, which undermines the results of this evaluation.

73

Heuristics for Systems-of-Systems Design

5.6 Final Remarks

This chapter described the implementation of a tool aimed to help SoS designers.

The tool was constructed with mKAOS mission model notation and part of the

heuristics catalog using a web browser as an interface synchronizing with a backend

application running on a server on the internet.

A feasibility study for the built tool was conducted to evaluate the tool and

provide insights on how to improve existing functionalities as well as the need to

create new functions to serve developers and managers. Despite this, it is noted

that it is quite necessary to deepen this assessment with teams and professionals in

other institutions where the SoS approach is recognized and used more commonly

as a business practice, such as in companies in the military domain.

It would be interesting to conduct other studies, such as those of a participatory

nature, in companies with professionals who work with realities that effectively

contemplate SoS operations. In this case, the practice could be to follow the work of

teams performing design tasks with the help of the modeling tool and heuristics for

SoS design, comparing the effect with existing techniques used by the teams without

using these artifacts.

In this case, with a more significant number of experienced professionals and

teams involved, it would be possible to perform statistical tests to measure the

effect of using the tool, verifying whether there is a correlation between the use of

the tool to perform design tasks and the expected gain in productivity in design

phase of SoS projects.

74

Chapter 6. Conclusion

This chapter presents the conclusions of this dissertation, the contributions of this

research, and the limitations for this study. We also discuss possible future work.

6.1 Epilogue

Information systems are increasingly present in the daily lives of people and compa-

nies, performing the most diverse functions such as financial services, health support,

improving mobility, and even entertainment. The amount of capabilities provided

by these systems makes it increasingly unfeasible to build new systems from scratch,

leading designers to think of solutions in the form of system arrangements that in-

tegrate the capabilities of several independent systems to deliver new functionality.

This is the general idea behind the SoS concept.

But how to guarantee reliability in this type of arrangement? One of the ways to

do so is to address issues that affect SoS at design time, which can minimize negative

impacts from problems arising in the SoS deployment. For traditional systems, there

are already several techniques and tools available to deal with all stages of their life

cycle, covering from design to eventual obsolescence. However, for SoS, those tools

do not work adequately.

Designing SoS can be a challenge using techniques and tools intended for tradi-

tional systems because the degree of uncertainty brought about by the independence

of the CS in relation to SoS can be very large.

The main research question in this dissertation (PRQ) was used to guide the

investigation of what are the heuristics that can be applied to SoS at design time.

To conduct the research, a methodology was planned, conducted, and analyzed

involving methods such as exploratory studies, systematic mapping study, focus

groups with practitioners, and surveys with experts. The results were an initial set

75

Heuristics for Systems-of-Systems Design

of 40 heuristics that were organized and refined, producing a catalog of 14 heuristics

to be applied to SoS at design time.

The types of SoS to which the heuristics can be applied, dealt with in the sec-

ondary research question RQ1, were evidenced during all phases of the research, and

it is concluded that the coordination of an SoS must be observed for the application

of heuristics according to a sequence of phases in the SoS design. The interde-

pendence between heuristics, dealt with in the secondary research question RQ2,

produced this sequence of phases to which heuristics should be applied in the design

process: initial definitions, CS characteristics, interoperability issues, identification

of emerging behaviors, and concerns about the monitoring of SoS operation.

6.2 Contributions

This dissertation contributed to the construction of a catalog of heuristics that can

be applied to verify decisions in the SoS design phase and to identify issues that can

be addressed at design time, improving the chances of a successful implementation

of SoS, as well as saving time, human and financial resources.

This research also provided to the scientific Information Systems and Software

Engineering communities the following detailed contributions:

• A systematic mapping study (Chapter 2, Section 2.3) by which it was pos-

sible to extract a set of heuristics for SoS, that was refined by conducting a

focus group with Master and Ph.D. students and evaluated in a further survey

conducted with SoS experts; and

• A modeling tool for SoS design using the mKAOS notation, running in a web

interface. The tool incorporated the SoS heuristics catalog, allowing improve

the SoS design process.

6.3 Publications

• Uma Ferramenta de Modelagem para Análise e Avaliação de Confia-

bilidade e Interoperabilidade em Sistemas-de-Sistemas por Meio de

Heuŕısticas: This paper was produced in the definition phase of a research

proposal. The article was published at the XIII Workshop on Theses and

76

Heuristics for Systems-of-Systems Design

Dissertations in Information Systems - WTDSI (IMAMURA; FERREIRA;

SANTOS, 2020);

• Fatores de Governança em Sistemas-de-Sistemas: Análise de uma

Instituição Pública Brasileira: This paper was produced during the first

year of research in the initial phase of the research to explore how professionals

perceive governance in SoS. The study was published at the V Workshop on

Social, Human and Economic Aspects of Software - WASHES (IMAMURA;

COSTA, et al., 2020);

• System-of-Systems Reliability: An Exploratory Study in a Brazilian

Public Organization: This paper was produced in the second year of the

research when it was necessary to explore how modeling could help in the char-

acterization of SoS problems. The study was published in the XVII Brazilian

Symposium on Information Systems - SBSI (IMAMURA; FERREIRA; FER-

NANDES, et al., 2021).

6.4 Limitations

The restrictions imposed by the COVID-19 pandemic hampered studies with a larger

number of participants and with face-to-face interactions’ modality. A participative

case study could be conducted, for example, to evaluate the tool produced, following

more closely two or more teams of experts within companies that actually work with

the SoS approach. However, even with the end of sanitary restrictions, it can be

difficult to find companies that use the SoS approach in a structured way and that

the administrators agree to participate in studies together with academia.

6.5 Future Work

The heuristics identified by this research are related to SoS design. It may be

interesting to study if other types of heuristics are useful for working with SoS in

other phases, such as when strategies are needed to monitor and control SoS missions

or how to define indicators for the fulfillment of SoS missions.

The tool produced within the scope of this research can be expanded to work in

conjunction with other tools in other areas, such as code generation for automating

77

Heuristics for Systems-of-Systems Design

tests and SoS simulation. It can be useful to work on integrating this tool with a

more robust platform such as mKAOS Studio itself and Eclipse framework.

There are some research centers that deal with various questions about SoS,

including in different domains such as the military domain. Working together with

other groups can produce a synergy capable of leveraging new research on the SoS

area.

SoS is still little explored both in industry and in academia, which increases the

need for further research on this topic. This research investigated how to improve

professionals’ understanding of heuristics for SoS design in order to improve the

chances of success for SoS implementation.

78

References

ABBOTT, Russ. Open at the top; open at the bottom; and continually (but

slowly) evolving. In: IEEE. PROCEEDINGS of the International

Conference on System of Systems Engineering (IEEE/SMC). Los Angeles,

USA: [s.n.], 2006. 6–pp.

ACKOFF, Russell L. Towards a system of systems concepts. Management

science, INFORMS, v. 17, n. 11, p. 661–671, 1971.

BAR-YAM, Yaneer. The Characteristics and Emerging Behaviors of System of

Systems. NECSI: Complex Physical, Biological and Social Systems

Project (January 7), 2004.

BASILI, Victor R; CALDIERA, Gianluigi; ROMBACH, H Dieter. The goal

question metric approach. Encyclopedia of software engineering,

p. 528–532, 1994.

BATISTA, Thais. Challenges for SoS architecture description. In: PROCEEDINGS

of the First International Workshop on Software Engineering for

Systems-of-Systems. Montpellier, France: [s.n.], 2013. p. 35–37.

BECK, Susan E; MANUEL, Kate. Practical research methods for librarians

and information professionals. [S.l.]: Neal-Schuman Publishers New

York, 2008.

BOARDMAN, J; SAUSER, B. System of Systems - the meaning of of. In:

PROCEEDINGS of the International Conference on System of Systems

Engineering (SoSE). Los Angeles, USA: [s.n.], 2006. p. 118–123.

BOSCARIOLI, Clodis; ARAUJO, Renata Mendes;

MACIEL, Rita Suzana Pitangueira. I GranDSI-BR Grand Research

Challenges in Information Systems in Brazil 2016-2026. Special

79

Heuristics for Systems-of-Systems Design

Committee on Information Systems (CE-SI). Brazilian Computer

Society (SBC), p. 12–40, 2017.

BOULDING, Kenneth E. General systems theory—the skeleton of science.

Management science, INFORMS, v. 2, n. 3, p. 197–208, 1956.

BOUZIAT, Teddy; CAMPS, Valérie; COMBETTES, Stéphanie. A cooperative SoS

architecting approach based on adaptive multi-agent systems. In: IEEE.

PROCEEDINGS of the International Workshop on Software Engineering

for Systems-of-Systems (SESoS). Gothenburg, Sweden: [s.n.], 2018. p. 8–16.

CADAVID, Héctor; ANDRIKOPOULOS, Vasilios; AVGERIOU, Paris.

Architecting systems of systems: A tertiary study. Information and

Software Technology, v. 118, p. 106202, 2020.

CARLOCK, Paul G; FENTON, Robert E. System of Systems (SoS) enterprise

systems engineering for information-intensive organizations. Systems

engineering, Wiley Online Library, v. 4, n. 4, p. 242–261, 2001.

CHUERI, Luciana. SIDE: A Framework for managing social innovation

digital ecosystems. 2021. 208 pp. PhD thesis – Universidade Federal do

Estado do Rio de Janeiro.

CHURCHER, Neville; FRATER, Sarah; HUYNH, Cong Phuoc; IRWIN, Warwick.

Supporting OO design heuristics. In: IEEE. PROCEDDINGS of the

Australian Software Engineering Conference (ASWEC). Melbourne,

Australia: [s.n.], 2007. p. 101–110.

CLARK, John O. System of systems engineering and family of systems engineering

from a standards, V-model, and dual-V model perspective. In: IEEE.

PROCEEDINGS of the Annual IEEE Systems Conference. Vancouver,

Canada: [s.n.], 2009. p. 381–387.

DAHMANN, Judith S.; BALDWIN, Kristen J. Understanding the Current State

of US Defense Systems of Systems and the Implications for Systems

Engineering. In: PROCEEDINGS of the IEEE Systems Conference.

Montreal, Canada: [s.n.], 2008. p. 1–7.

80

Heuristics for Systems-of-Systems Design

DASTON, Lorraine J. Probabilistic expectation and rationality in classical

probability theory. Historia mathematica, Elsevier, v. 7, n. 3,

p. 234–260, 1980.

DAVIS, Fred D. User acceptance of information technology: system characteristics,

user perceptions and behavioral impacts. International journal of

man-machine studies, Elsevier, v. 38, n. 3, p. 475–487, 1993.

GARCÉS, Lina; NAKAGAWA, Elisa Yumi. A process to establish, model and

validate missions of systems-of-systems in reference architectures. In:

PROCEEDINGS of the Symposium on Applied Computing (SAC).

Marrakech, Morocco: [s.n.], 2017. p. 1765–1772.

GARRETT, Jesse James et al. Ajax: A new approach to web applications. San

Francisco, CA, USA, 2005.

GIGERENZER, Gerd. Why heuristics work. Perspectives on psychological

science, SAGE Publications Sage CA: Los Angeles, CA, v. 3, n. 1,

p. 20–29, 2008.

GIGERENZER, Gerd; GAISSMAIER, Wolfgang. Heuristic decision making.

Annual review of psychology, Annual Reviews, v. 62, p. 451–482, 2011.

GONÇALVES, Marcelo Benites; OQUENDO, Flavio; NAKAGAWA, Elisa Yumi.

A meta-process to construct software architectures for system of systems.

In: PROCEEDINGS of the ACM Symposium on Applied Computing

(SAC). Salamanca, Spain: [s.n.], 2015. p. 1411–1416.

IMAMURA, Marcio; COSTA, Luiz Alexandre; PEREIRA, Bruno;

FERREIRA, Francisco Henrique; FONTAO, Awdren; SANTOS, Rodrigo.

Fatores de Governança em Sistemas-de-Sistemas: Análise de uma

Instituição Pública Brasileira. In: SBC. PROCEEDINGS of the Anais do

Workshop sobre Aspectos Sociais, Humanos e Econômicos de Software

(WASHES). Cuiabá, Brazil: [s.n.], 2020. p. 31–40.

IMAMURA, Marcio; FERREIRA, Francisco Cerdeira;

SANTOS, Rodrigo Pereira dos. Uma Ferramenta de Modelagem para

Analise e Avaliação de Confiabilidade e Interoperabilidade em

Sistemas-de-Sistemas por Meio de Heurısticas. In: SBC. PROCEEDINGS of

81

Heuristics for Systems-of-Systems Design

the Workshop de Teses e Dissertações em Sistemas de Informação (WTDSI)

e Anais Estendidos do Simpósio Brasileiro de Sistemas de Informação

(SBSI). São Bernardo do Campo, Brazil: [s.n.], 2020. p. 48–51.

IMAMURA, Marcio; FERREIRA, Francisco Henrique;

FERNANDES, Juliana Costa; SANTOS, Rodrigo. System-of-Systems

Reliability: An Exploratory Study in a Brazilian Public Organization. In:

PROCEEDINGS of the Brazilian Symposium of Information Systems

(SBSI). Uberlândia, Brazil: [s.n.], 2021.

JACKSON, Scott; FERRIS, Timothy L. J. Resilience principles for engineered

systems. Systems Engineering, v. 16, n. 2, p. 152–164, 2013. ISSN

10981241.

JACOB, François. The Logic of Living Systems: A History of Heredity. Allen

Lane, 1974.

JAMSHIDI, Mo. System of systems engineering-New challenges for the 21st

century. IEEE Aerospace and Electronic Systems Magazine, IEEE,

v. 23, n. 5, p. 4–19, 2008.

KAZMAN, Rick; SCHMID, Klaus; NIELSEN, Claus Ballegaard; KLEIN, John.

Understanding patterns for system of systems integration. In: IEEE.

PROCEEDINGS of the International Conference on System of Systems

Engineering (SoSE). Hawaii, USA: [s.n.], 2013. p. 141–146.

KIRTLEY, Nick; KAMAL, Ahmad Waqas; AVGERIOU, Paris. Developing a

modeling tool using eclipse. [S.l.]: University of Groningen, Johann

Bernoulli Institute for Mathematics and . . ., 2008.

KITZINGER, Jenny. The methodology of focus groups: the importance of

interaction between research participants. Sociology of health & illness,

Wiley Online Library, v. 16, n. 1, p. 103–121, 1994.

LIANG, Qianhui; RUBIN, Stuart H. Randomisation in designing software tests for

systems of systems. International Journal of Information and

Decision Sciences, Inderscience Publishers Ltd, v. 4, n. 2-3, p. 108–129,

2012.

82

Heuristics for Systems-of-Systems Design

LOPES, Frederico; LOSS, Stefano; MENDES, Altair; BATISTA, Thais;

LEA, Rodger. SoS-centric middleware services for interoperability in smart

cities systems. In: PROCEEDINGS of the International Middleware

Conference. Trento, Italy: [s.n.], 2016. p. 1–6.

MADNI, Azad M; SIEVERS, Michael. System of systems integration: Key

considerations and challenges. Systems Engineering, Wiley Online

Library, v. 17, n. 3, p. 330–347, 2014.

MAHMOOD, Asif. ‘SoS call’at the other edge of chaos. Journal of Systems

Science and Complexity, Springer, v. 29, n. 1, p. 133–150, 2016.

MAIER, Mark W. Architecting Principles for Systems-of-Systems. In: WILEY

ONLINE LIBRARY, 1. PROCEEDINGS of the International Symposium

(INCOSE). [S.l.: s.n.], 1996. v. 6, p. 565–573.

. . Systems Engineering, Wiley Online Library, v. 1, n. 4,

p. 267–284, 4 1998.

MANTHORPE, William HJ. The emerging joint system of systems: A systems

engineering challenge and opportunity for APL. In: 3. PROCEEDINGS of

the Johns Hopkins APL Technical Digest. Maryland, USA: [s.n.], 1996.

v. 17, p. 305–313.

MCDERMOTT, Tom. Developing systems thinking skills using healthcare as a

case study. In: IEEE. PROCEEDINGS of the Conference on System of

Systems Engineering (SoSE). Paris, France: [s.n.], 2018. p. 240–244.

MITTAL, Saurabh; RAINEY, Larry. Harnessing emergence: The control and

design of emergent behavior in system of systems engineering. In:

PROCEEDINGS of the Conference on Summer Computer Simulation

(SummerSim). San Diego, United States: [s.n.], 2015. p. 1–10.

NCUBE, Cornelius; LIM, Soo Ling. On systems of systems engineering: A

Requirements engineering perspective and research agenda. In: IEEE.

PROCEEDINGS of the International Requirements Engineering Conference

(RE). Banff, Canada: [s.n.], 2018. p. 112–123.

83

Heuristics for Systems-of-Systems Design

NIELSEN, Claus Ballegaard; LARSEN, Peter Gorm; FITZGERALD, John;

WOODCOCK, Jim; PELESKA, Jan. Systems of systems engineering: basic

concepts, model-based techniques, and research directions. ACM

Computing Surveys (CSUR), ACM New York, NY, USA, v. 48, n. 2,

p. 1–41, 2015.

NIELSEN, Jakob. 10 Usability Heuristics for User Interface Design.

[S.l.: s.n.], 2005. Available from:

¡https://www.nngroup.com/articles/ten-usability-heuristics/¿.

. Enhancing the explanatory power of usability heuristics. In:

PROCEEDINGS of the Conference on Human Factors in Computing

Systems (SIGCHI). Boston, USA: [s.n.], 1994. p. 152–158.

NULTY, Duncan D. The adequacy of response rates to online and paper surveys:

what can be done? Assessment & evaluation in higher education,

Routledge, v. 33, n. 3, p. 301–314, 2008.

O’BRIEN, James A; MARAKAS, George M. Management information

systems. [S.l.]: McGraw-Hill/Irwin, 2011. v. 9.

OMG; PARIDA, R; MAHAPATRA, S. Business process model and notation

(BPMN) version 2.0. Object Management Group, 2011.

POLANČIČ, Gregor; HERIČKO, Marjan; ROZMAN, Ivan. An empirical

examination of application frameworks success based on technology

acceptance model. Journal of systems and software, Elsevier, v. 83,

n. 4, p. 574–584, 2010.

REES, Michael J. Evolving the browser towards a standard user interface

architecture. In: CITESEER. PROCEEDINGS of the Australasian

Conference on User Interfaces (AUIC). Melbourne, Australia: [s.n.], 2002.

v. 20, p. 1–7.

RICCI, Nicola; ROSS, Adam M; RHODES, Donna H. A generalized options-based

approach to mitigate perturbations in a maritime security

system-of-systems. Procedia Computer Science, Elsevier, v. 16,

p. 718–727, 2013.

84

Heuristics for Systems-of-Systems Design

RIEL, Arthur. Object-Oriented Design Heuristics. [S.l.]: Addison-Wesley,

1996.

SAGE, Andrew P; CUPPAN, Christopher D. On the systems engineering and

management of systems of systems and federations of systems.

Information knowledge systems management, IOS Press, v. 2, n. 4,

p. 325–345, 2001.

SANTOS, Rodrigo Pereira dos. Managing and monitoring software

ecosystem to support demand and solution analysis. 2016. 228 pp.

PhD thesis – Universidade Federal do Rio de Janeiro.

SCHNEIDER, Jean-Philippe; TEODOROV, Ciprian; SENN, Eric;

CHAMPEAU, Joël. Towards a dynamic infrastructure for playing with

systems of systems. In: PROCEEDINGS of the European Conference on

Software Architecture. Vienna, Austria: [s.n.], 2014. p. 1–4.

SHARAWI, Abeer; SALA-DIAKANDA, Serge N; DALTON, Adam;

QUIJADA, Sergio; YOUSEF, Nabeel; RABELO, Luis; SEPULVEDA, Jose.

A distributed simulation approach for modeling and analyzing systems of

systems. In: IEEE. PROCEEDINGS of the Winter Simulation Conference

(WSC). Monterey, USA: [s.n.], 2006. p. 1028–1035.

SHENHAR, Aaron. A new systems engineering taxonomy. In: PROCEEDINGS of

the International Symposium of the National Council on System

Engineering (INCOSE). San Jose, USA: [s.n.], 1994. v. 2, p. 261–276.

SHERMAN, Steven J; CORTY, Eric. Cognitive heuristics. Lawrence Erlbaum

Associates Publishers, 1984.

SILVA. Mission-driven software-intensive system-of-systems architecture

design. 2018. 212 pp. PhD thesis – Université de Bretagne Sud;

Universidade federal do Rio Grande do Norte . . .

SILVA, Eduardo. Uma Linnguagem para Descrição de Missões em

Sistemas-de-Sistemas. 2015. Master’s dissertation – Federal University of

Rio Grande do Norte, Rio Grande do Norte, Brazil.

85

Heuristics for Systems-of-Systems Design

SILVA, Eduardo; BATISTA, Thais; OQUENDO, Flavio. A mission-oriented

approach for designing system-of-systems. In: IEEE. PROCEEDINGS of

the System of Systems Engineering Conference (SoSE). Väster̊as, Sweden:

[s.n.], 2015. p. 346–351.

. . In: PROCEEDINGS of the System of Systems Engineering

Conference (SoSE). San Antonio, USA: [s.n.], 2015. p. 346–351.

SILVA, Eduardo; CAVALCANTE, Everton; BATISTA, Thais; OQUENDO, Flavio;

DELICATO, Flavia C; PIRES, Paulo F. On the characterization of missions

of systems-of-systems. In: PROCEEDINGS of the European Conference on

Software Architecture Workshops. Vienna, Austria: [s.n.], 2014. p. 1–8.

SILVA AMORIM, Simone da; ALMEIDA, Eduardo Santana de;

MCGREGOR, John D; FLACH G. CHAVEZ, Christina von. When

ecosystems collide: making systems of systems work. In: PROCEEDINGS of

the European Conference on Software Architecture (ECSA). Vienna,

Austria: [s.n.], 2014. p. 1–4.

SPINOLA, Rodrigo O; DIAS-NETO, Arilo C; TRAVASSOS, Guilherme H.

Abordagem para desenvolver tecnologia de software com apoio de estudos

secundários e primários. In: SN. PROCEEDINGS of Experimental Software

Engineering Latin American Workshop (ESELAW). São Carlos, Brazil:

[s.n.], 2008. p. 25.

STEIJGER, Tamara. Downgrading Java 5.0 Projects: An approach based

on source-code transformations. [S.l.: s.n.], 2008.

SUNSTEIN, Cass R. Moral heuristics. Behavioral and brain sciences, [New

York]: Cambridge University Press, 1978-, v. 28, n. 4, p. 531–541, 2005.

TVERSKY, Amos; KAHNEMAN, Daniel. Judgment under uncertainty: Heuristics

and biases. science, American association for the advancement of science,

v. 185, n. 4157, p. 1124–1131, 1974.

VAN LAMSWEERDE, Axel. Goal-oriented requirements engineering: A guided

tour. In: IEEE. PROCEEDINGS of the IEEE International Symposium on

Requirements Engineering. Toronto, Canada: [s.n.], 2001. p. 249–262.

86

Heuristics for Systems-of-Systems Design

WEYNS, Danny; ANDERSSON, Jesper. On the challenges of self-adaptation in

systems of systems. In: PROCEEDINGS of the International Workshop on

Software Engineering for Systems-of-Systems (SESoS. Montpellier, France:

[s.n.], 2013. p. 47–51.

ZAGANELLI, Bárbara Martins; NISENBAUM, Moises Andre;

ALVES, Karla dos Santos Guterres; MARQUES, Sarah Barreto;

OLINTO, Gilda. O grupo focal na Ciência da Informação. Informação &

Sociedade, Universidade Federal da Paraıba-Programa de Pós-Graduação

em Ciência da . . ., v. 25, n. 3, 2015.

87

Appendices

88

Appendix I. Survey to evaluate heuristics

I.1 Data collection form

The 11 pages of the data collection form for the heuristic evaluation survey are

presented in the next pages with dummy marks on the questions.

89

Appendix II. Tool code snippet

II.1 JavaScript routine to check model

// check model for heuristics and mKAOS semantics

function checkModel() {

// mensagem de erros a ser gerada

var msg = ’’;

// load nodes properties

var nodes_txt = document.getElementById("nodes").innerText;

if (nodes_txt == ’’) nodes_txt = ’[]’;

// parse txt to JSON format

var arrayNodes = JSON.parse(nodes_txt);

// counters

var cntConstituent = 0;

var cntRefinement = 0;

var cntMission = 0;

// nodes loop checking heuristics

arrayNodes.forEach(function (node) {

// load properties to test

var id = node.id;

var label = node.label;

101

Heuristics for Systems-of-Systems Design

var type = node.type;

var interface = node.interface;

var available = node.available;

var checked = node.checked;

// SoS node properties

var SoSType = node.SoSType;

var provider = node.provider;

var builder = node.builder;

var benefits = node.benefits;

var policy = node.policy;

// refinment node

if (type == ’refinement’) {

// just counting yet

cntRefinement++;

}

// SoS checking

if (type == ’SoS’) {

// not applied to virtual SoS

if (SoSType !== ’Virtual’) {

// provider defined?

if (provider == ’’) {

msg = msg + "Heuristic IN 1- Identify the

responsible for providing resources to SoS \n";

}

// bulider defined?

if (builder == ’’) {

102

Heuristics for Systems-of-Systems Design

msg = msg + Heuristic IN 2- Identify the

responsible for building and operating

the SoS \n";

}

// who benefits defined?

if (benefits == ’’) {

msg = msg + Heuristic IN 3- Identify who

benefits from SoS or inform ’nobody’ in SoS

properties \n";

}

// feedback policy defined?

if (policy == ’’) {

msg = msg + Heuristic MO 2- Include the

feedback policy for SoS operation \n";

}

// SoS type defined?

if (SoSType == ’’) {

msg = msg + "- Define the SoS type in

SoS properties \n";

}

}

}

// constituent systems checking

if (type == ’constituent’) {

// CS counter

cntConstituent++;

103

Heuristics for Systems-of-Systems Design

// interface defined?

if (interface == ’’) {

msg = msg + "Heuristic IO 1- No interface

defined for [" + label + "] \n";

}

}

// missions checking

if (type == ’mission’) {

// mission counter

cntMission++;

// capability not available but checked!!!

if (available == ’no’ && checked == ’yes’) {

msg = msg + "Capability [" + label + "] not

availabie but checked?\n";

}

// capability not available

if (available == ’’) {

msg = msg + "Heuristic SC 1- Define if the

capability [" + label + "] is availabie \n";

}

// capability checked?

if (checked == ’’) {

msg = msg + "Heuristic SC 2- Define if the

capability [" + label + "] was checked \n";

}

}

}

104

Heuristics for Systems-of-Systems Design

// SoS without minimum elelemts

if (cntConstituent == 0) {

msg = msg + "- SoS have no constituent systems \n";

}

if (cntMission == 0) {

msg = msg + "- SoS have no capabilities/missions \n";

}

if (cntRefinement == 0) {

msg = msg + "- SoS have no refinements \n";

}

// inform if any issues found

if (msg == ’’) {

swal(’Check Model’, ’No issues found’, ’success’);

} else {

swal(’Check Model’, msg, ’warning’);

}

}

II.2 mKAOS Studio Lite tutorial

The four pages tutorial included in the developed tool is presented below.

105

1. Introduction

This tool is intended to assist in the design of systems-of-systems (SoS) projects and was developed within the scope of the Complex
Systems Engineering Laboratory (LabESC) at the Federal University of the State of Rio de Janeiro (UNIRIO). This tool uses elements
notation from the mKAOS Studio tool, developed using Eclipse environment and built under the Systems Conception Laboratory
(ConSiste) at the Federal University of Rio Grande do Norte (UFRN).

SoS are arrangements of systems with operational and managerial independence called constituent systems that unite capabilities to fulfill a
new mission that is not the responsibility of any of the constituent systems in isolation. Examples of SoS are smart cities where various
public and private systems communicate to promote better urban mobility, emergency care, and health and social welfare.

The SoS mission model diagram, built with this tool, represents the constituent systems involved in SoS design, how these constituent
systems participate in SoS and how the capabilities provided are used to generate new capabilities needed to fulfill SoS missions. This
diagram can make it easier to communicate project ideas among managers, systems engineers, and developers in the SoS design phase.

1.1 Aobout this tool

This tool is intended to assist in the design of systems-of-systems (SoS) projects and was developed within the scope of the Complex
Systems Engineering Laboratory (LabESC) at the Federal University of the State of Rio de Janeiro (UNIRIO). This tool uses elements
notation from the mKAOS Studio tool, developed using Eclipse environment and built under the Systems Conception Laboratory
(ConSiste) at the Federal University of Rio Grande do Norte (UFRN).
This modeling tool was developed in order to assist in the SoS design
using rules
(heuristics) to be applied during SoS modeling. As the diagram is built,
the tool helps both in the composition of the elements,
criticizing the types of connections, and infilling
of the attributes necessary for improve the chances of success of the project.

It is possible to evaluate possible problems in the model being generated using the [Check Model] button at any time
during diagram
construction. The messages issued by the tool indicate the possible problem, the
element involved, and the respective heuristic involved if
any. The tool's own interface also prevents incorrect connections being made between elements, for example, a constituent system A linked
to another constituent system B, representing that the system
A provides system B, which for SoS does not make sense as constituent
systems provide capabilities instead of other systems.

Elements that need additional attributes to be set initially appear with a white background in the
diagram. Once this information is entered,
the element is filled with the corresponding background color.
The figure below shows an example of elements with no attributes indicated
(on the left) and with full attributes
indicated (on the right). White background notation has been introduced in this tool.

Figure 1. SoS mission model example elements

2. SoS mission model example using mKAOS

Below is an example diagram representing an SoS with two constituent systems
providing capability 1 and capability 2. In this model,
constituent system 1 (unreliable system) provides capability 1, but it may have temporary failures (clock symbol), and so the redundant
system was added to the project to provide a redundant capability to capability 1 in the events of a failure, thus ensuring that the global
mission can be fulfilled more reliably. The clock and exclusive gateway notations were introduced in this tool.

Figure 2. SoS example

3. The elements used in the mission model

The mKAOS mission model diagram uses the following elements:

Constituent system: Independent system that provides one or more capabilities to the SoS.

Capability / Mission: Represents a capability provided by a constituent system or a mission accomplished by the SoS.

Refinement: It is an activity designed to process one or more capabilities provided to deliver new capabilities or perform SoS
missions.

Constituent System Responsible For link: Indicates that a constituent system is responsible for delivering a particular capability.

Refinement responsible for link: Indicates that a particular refinement is responsible for delivering a new capability or mission.

Capability provisioning link for refinement: Indicates which capabilities are delivered for refinement. Note that there is no arrow
on this edge.
as there is no capability or mission delivery for the SoS.

In addition to the above elements, mKAOS Studio Lite adds the following elements:
Exclusive gateway: used to represent that there is more than one constituent system available to provide redundancy in case of
failure to provide some capacity.

Temporary failure: Happens when a system stops providing a capability but returns to
provide it without the need for action, such
as when there is a network problem.

Permanent failure: Occurs when a system stops responding and action is required to
that it works again or is replaced, such as
when a system update
causes an error in a web service..

Below is a schematic of the tool's interface elements:

Figure 3. Elements of tool interface

4. Building a mission model in the tool

To build a SoS project using this tool, you can follow these steps:

Step 1. Identify which constituent systems and their capabilities will be used
by SoS and create a symbol for each one:

Click on the symbol to create each of the
constituent systems.
Click on each of the symbols of the constituent systems and change its name in the "Node" box
below the diagram, modifying the
generic name given by the tool in the Label field and the hint to
be shown when the mouse lands on the figure.
Identify which capabilities must be combined to generate new capabilities and realize the
side missions and the global SoS mission.

Click on the symbol to create each of the capabilities.
/li>
Click on each of the capability symbols and change its name in the editing box
in the diagram, modifying the generic name given by
the tool in the Label field and the hint to
be shown when the mouse lands on the figure.

Link the constituent systems to their respective capabilities by clicking on the symbol
 and then in the pair of system and
capacity to bind.
The tool chooses the correct direction of the arrow.

Step 2. Identify what refinements are needed and what capabilities are involved in each refinement:

Click on the symbol to create the representation of the
necessary refinements for each of the processes to utilize the
capabilities.

Click on the symbol and link capabilities
to be refined (combined, processed, etc.) by each of the refinements created.

Click on the symbol to create the mission to be performed or
new capacity being delivered to the SoS.

For each refinement, click on the symbol to create the
mission to be performed or the new capability to be delivered to the
SoS.
Click on the symbol and link the
refinements to their respective abilities or created missions.

Step 3. If necessary, repeat step 2 to create new refinements to the abilities or quests created by the
previous refinements until it was able to
represent the global SoS mission.

If you can identify possible flaws in the project already follow step 4.

Step 4. Identify if there are possible failures of the constituent systems to represent them in the model.

Click on the edge enter the system that can
exhibit failure and your ability to choose the failure type option in the Edge box
below the diagram,
saving then. An icon representing the type of failure will be added to the link.
If it is already possible to identify a redundant capacity for this possible failure, create the system
and redundant capacity using step 1.

Click on the symbol to create the representation
alternative consumption in case of failure and link this symbol to the
capacities involved.

- Link to the respective refinement, denoting that
redundant capacity can be consumed in case of main capacity failure.

To delete any element created, just click on it and then click on
 icon or [DEL] key.

5 - Heuristics for SoS projects

Heuristics are criteria, key points or "golden rules" that a project needs
attend to fulfill a certain proposal. The heuristic can be considered a
"mental shortcut" used in human thinking to get to results and questions
more complicated quickly and easily, even if they are uncertain or
incomplete.

Heuristic evaluation is a method proposed by Jakob Nielsen and Rolf Molich that consists of a
inspection to find problems in a user
interface.
In this tool, we use heuristics to help build SoS projects.
They can be checked via the [Check Model] button at the bottom of the
toolbar.

Initialization heuristic IN 1 - The project should clearly identify who provides the capabilities and resources
necessary for the operation of
the SoS.

SoS depends on the synergy between systems that provides the necessary capabilities for its operation,
it is necessary to guarantee who
supplies them. Example: in an SoS for the prevention of natural disasters, there is
a responsible person able to indicate which systems can
be integrated to the SoS?

Initialization heuristic IN 2 - The project should clearly identify who is responsible for the
construction and operation of the SoS.

When funding is needed for the operation of the SoS, those involved must inform how and by whom this
it will be done so that these issues
are dealt with at the appropriate time. Example: How much will it cost and who
goes to the activities and resources needed to build and
maintain the SoS, in addition to those already available
by constituent systems?

Initialization heuristic IN 3 - The project should clearly identify who benefits from SoS.

Every SoS is built and operates for a purpose. It is important to identify who are the beneficiaries of the activities or operation of the SoS.
Example: who are the possible users of SOS and what is the value of
what SoS produces to them?

Constituent systems heuristic CS 1 - Define which capabilities are already available and which they need
be implemented in the
constituent systems for the construction and operation of the SoS.

The SoS project must anticipate whether the necessary functionalities already exist in the constituent systems or
whether it will be necessary
to implement new features. Example: it will be necessary to demand that a system
of traffic control provides a new capability to produce
information to assist
on the ambulance path?

Constituent systems heuristic CS 2 - Individual capabilities need to be checked.

Each capability of the constituent systems must be checked to see if it matches what is expected.
Example: The designer must verify that the
capability of a localization system is available with the
frequency and accuracy suitable for the purpose of the SoS.

Interoperability heuristic IO 1 - The interfaces between the constituent systems and the SoS must
be defined during the project.

The interfaces between the constituent systems and the SoS are a crucial factor for the operation of the SoS and
they are points where the
designer can exert influence. Example: The communication required between
2 constituent systems is satisfactorily available for SoS
operation or will be required
build new channels for connectivity?

Monitoring heuristic MO 1 - The interface patterns that emerged in the evolutionary process
must be identified.

The evolutionary process (eg upgrades) may require new communication standards or the updating of projected standards
initially. It is
necessary to maintain a set of standards used according to the constituent systems and
the SoS itself evolve, generating a roadmap for the
process. Example: When a new hospital becomes part
of the municipal health system, it is necessary to include the communication
standards of their systems in the project
of the SoS if necessary.

Monitoring heuristic MO 2 - The SoS project should include a feedack policy for the operation
of the SoS.

It is necessary to monitor the SoS to detect problems during its operation and define the actions required to
deal with them. For example: Is
it necessary to monitor the average time of emergency medical care and the respective
vacation schedule of professionals to adjust public
health activities in a smart city?

6. Questions, suggestions and contact

In case of questions or suggestions, please contact us by email:

marcio.imamura@edu.unirio.br

Thank you for contributing to this study!

Appendix III. Feasibility study

The following research instruments were prepared in portuguese as they were created

to be used with groups of researchers in Brazil.

III.1 Itinerary for the feasibility study meetings

Each individual meeting with participants of this study followed the same itinerary:

1st meeting

1. Lecture on SoS

- large number of systems in the modern world

- practically no one else develops systems from scratch

- one of the ways to create new systems is to use ready-made systems

- SoS composed of management and operational independent systems

2. Purpose of the tool and research

- produce a template to communicate SoS design to stakeholders

- evaluate model using heuristics from the literature

3. Simple model explaining the use of the tool

2nd Meeting (1 week later)

1. Ask & answer questions

2. Check if the concepts were absorbed

3. Check if the participant can use the tool

4. Request the completion of the evaluation form if everything is ok

3rd Meeting (if necessary)

- Ask & answer questions about evaluation form if applicable

- Request the completion of the evaluation form again

110

Heuristics for Systems-of-Systems Design

III.2 Guidelines for tool evaluation

The participants received as the following guidelines prior to attending the first

study meeting (in Portuguese):

Orientações para uso e avaliação da ferramenta de modelagem

de sistemas-de-sistemas

Esta pesquisa é conduzida por Marcio Imamura (estudante de mestrado do

PPGI/UNIRIO) sob orientação do Professor Doutor Rodrigo Santos e colaboração

dos mestres Francisco Henrique Ferreira e Juliana Fernandes.

Informações pessoais sobre os participantes não serão divulgadas nos relatórios

da pesquisa, que preservará o caráter anônimo e confidencial das respostas. Sua

contribuição é extremamente importante para esta pesquisa.

Agradecemos gentilmente sua colaboração!

Marcio Imamura, mestrando (UNIRIO)

Juliana Fernandes (IFPI)

Francisco Henrique Ferreira (UNIRIO)

Rodrigo Santos, professor orientador (UNIRIO)

Em caso de dúvidas ou pedido de informações extras, por favor, entre em contato

por email: marcio.imamura@edu.unirio.br

Seção 1. Termo de consentimento livre esclarecido (TCLE)

Ao responder a este questionário, você permite que os pesquisadores obtenham,

usem e divulguem as informações geradas a partir dos dados agrupados conforme

descrito abaixo. CONDIÇÕES

1. Eu entendo que todas as informações são confidenciais. Eu não serei pessoal-

mente identificado e concordo em concluir o questionário para fins de pesquisa. As

informações derivadas dessa pesquisa anônima podem ser publicados em periódicos,

conferências e publicações em blogs.

2. Entendo que minha participação nesta pesquisa é totalmente voluntária e que

recusar participar não envolverá penalidade ou perda de benef́ıcios. Se eu escolher,

posso retirar minha participação a qualquer momento. Eu também entendo que, se

eu optar por participar, posso me recusar a responder questões abertas as quais eu

não me sinta confortável.

111

Heuristics for Systems-of-Systems Design

3. Entendo que posso entrar em contato com o pesquisador se tiver alguma

dúvida sobre a pesquisa. Estou ciente de que meu consentimento não me beneficiará

diretamente. Também estou ciente de que o autor manterá os dados de maneira

agrupada, coletados em perpetuidade e poderá utilizá-los para trabalhos acadêmicos

futuros.

4. Ao prosseguir para a próxima seção, eu livremente reconheço meus direitos

como participante voluntário(a) da pesquisa, conforme descrito acima, e forneço

consentimento ao pesquisador para usar meus dados na condução de pesquisas sobre

a área mencionada acima.

Seção 2. Sobre sistemas-de-sistemas

Sistemas-de-sistemas (SoS) podem ser compreendidos como um arranjo de sis-

temas independentes (gerencial e operacionalmente), interagindo para cumprir uma

nova missão, que não é cumprida por nenhum dos sistemas constituintes isolada-

mente.

Um exemplo de SoS são as cidades inteligentes, onde vários sistemas públicos e

privados colaboram para melhorar a qualidade de vida dos cidadãos e otimizar o uso

de recursos públicos. Neste exemplo, sistemas independentes como os sistemas de

trânsito podem colaborar com os sistemas de hospitais e da defesa civil para coor-

denar atendimento de emergência em caso de desastres naturais e outras tragédias

de grande porte.

De maneira geral, existem dois tipos de missões em SoS: globais, sendo as missões

que devem ser realizadas pelo SoS como um todo e individuais (ou capacidades) de

cada sistema constituinte que são refinadas (combinadas, transformadas etc) para

que o SoS possa cumprir sua(s) missão(ões) globais.

O software a ser avaliado neste trabalho utiliza a notação do modelo de missões

mKAOS para retratar o relacionamento entre os sistemas constituintes para entregar

a missão do SoS, deixando de lado qualquer informação relacionada a implementação

espećıfica dos sistemas constituintes ou como a comunicação entre eles deverá ser

implementada.

A ferramenta mKAOS foi produzida no Laboratório de Concepção de Sistemas

(ConSiste) do Departamento de Informática e Matemática Aplicada da Universidade

Federal do Rio Grande do Norte. Os elementos gráficos da notação são descritos

112

Heuristics for Systems-of-Systems Design

abaixo:

Sistemas constituintes: Sistemas que fornecem capacidades ao SoS

Missão ou capacidade: No caso dos constituintes, é a capacidade fornecida ao

SoS ou missão do SoS quando resultado de refinamento.

Refinamento: Processo que compila uma ou mais capacidades fornecidas em uma

missão do SoS.

Link “responsável por”: Indica qual sistema constituintes ou refinamento é re-

sponsável pelo fornecimento da capacidade ou missão.

Link sem setas: indica entrega de capacidades para consumo do refinamento.

Seção 3. Descrição do problema

Para este exerćıcio de avaliação do software em questão, considere a seguinte

situação que ocorre no Instituto Brasileiro de Geografia e Estat́ıstica:

Nesse instituto, existem vários sistemas técnicos e administrativos que em certos

momentos acabam fornecendo capacidades para cumprir o objetivo de planejar novas

contratações de profissionais bem como subsidiar pedidos de recursos para realização

das atividades de coleta de informações.

Os Sistemas Constituintes

Os sistemas técnicos cuidam das pesquisas e fornecem a informação para pro-

cessamento estat́ıstico e controlam a quantidade de questionários coletados pelas

agências do IBGE em todo Brasil. Os 4 sistemas técnicos envolvidos são: Sistema

de pesquisas agropecuárias. Coletam informações sobre produção dos estabeleci-

mentos agropecuários como, por exemplo, a produção de grãos, leite, ovos, tomates,

laranja etc.

Sistema de pesquisas econômicas. Estes sistemas controlam a coleta de in-

formações sobre atividades econômicas, como comércio e serviços. Sistema do reg-

istro civil. São realizadas junto aos cartórios, coletando informações sobre nasci-

mentos e mortes.

Sistema da pesquisa nacional por amostra de domićılios. Realiza coleta de in-

formações sobre a população como trabalho e rendimento.

Além de controlarem a distribuição dos questionários e do andamento da coleta

de informações, juntos estes sistemas fornecem o total de questionários coletados.

Os sistemas administrativos cuidam de atividades necessárias para apoiar as

113

Heuristics for Systems-of-Systems Design

atividades técnicas possibilitando alocação adequada de recursos humanos e ma-

teriais envolvidos na coleta, observando o cumprimento das normas legais e boas

práticas do governo federal. Os 3 sistemas administrativos envolvidos são:

Sistema para trabalhadores permanentes. Controla pessoal efetivo alocado na

sede da instituição e em coordenação de trabalhadores temporários contratados nas

agências do IBGE para coletar questionários.

Sistema para trabalhadores temporários. Contratados para fazer a coleta nas

agências do IBGE, realizando a tarefa de ir a campo para coletar informações Sistema

para controle de viagens. Controla diárias, passagens e utilização de véıculos quando

são necessários estes tipos de recursos para realização das pesquisas.

Além de observarem todo o aspecto legal e do processo de utilização dos recursos

humanos e materiais, estes sistemas fornecem as informações sobre pessoal dispońıvel

e viagens a serviço. Objetivo

Dada a situação descrita, modele o SoS utilizando a ferramenta para representar

como os sistemas constituintes interagem para entregar a missão global do SoS

de fornecer informações para o planejamento e contratação de recursos humanos e

materiais com o objetivo de viabilizar a coleta de questionários de forma econômica

e racional.

A ferramenta pode ser acessada no link:

http://mimamura.com/diagram

Pedimos que a ferramenta seja utilizada por cerca de 1 semana ou o tempo

necessário para conhecê-la, utilizá-la e tirar suas dúvidas. Após sua experiência, por

favor utilize o seguinte link para fazer a avaliação.

https://forms.gle/kJKZxCzKVrBh6iVe8

Qualquer dúvida entre em contato pelo e-mail marcio.imamura@edu.unirio.br

Obrigado!

III.3 Data collection form

The 7 pages of the data collection form for the feasibility study survey are presented

in the next pages with dummy marks on the questions (in Portuguese).

114

Heuristics for Systems-of-Systems Design

III.4 Survey responses to Q9, Q10 and Q11

All participants responses to Q9, Q10 and Q11 questions are presented in the next

pages (in Portuguese).

Q9. De acordo com sua opinião, foram identificados aspectos positivos

ou negativos da utilização da ferramenta? Se sim, qual(ais)?

Positivo : bem fácil e intuitiva.

Negativo : a opção de ”apagar” um elemento.

Posivito: Permitiu observar a fragilidade do sistema em seu estado atual. Percebendo

que falhas nos ńıveis mais baixos da cadeia de sistemas, impede o funcionamento

por completo do sistema.

Negativo: 1) A dimensão de altura dispońıvel para visualização é pequena e

poderia ser aumentada.

2) Os novos nós são criados numa posição fixa, que, dependendo do tamanho do

diagrama e do local sendo visualizado, fica escondida.

Positivo: amigável, interface simples e enxuta, bom tempo de resposta, e inde-

pendente de plataforma (basta ter um navegador). Negativo: documentação pode

ser melhorada, principalmente no aspecto conceitual. Também senti falta de um

exemplo prático.

Considerei a ferramenta de fácil utilização, com interface simples e intuitiva.

Também considerei a indicação gráfica de inconsistêncis nos atributos (quando a

figura fica cheia ou vazia) muito importante para rápida visualização do estado do

SoS. A ferramenta de verificação de consistências no modelo é de grande ajuda para

indicar exatamente o que deve ser corrigido.

Pontos positivos: facilidade de uso, de edição de propriedades, interface limpa

Aspectos positivos:

1) utilização de cores e preenchimento com significado; menu lateral com os

śımbolos ajudou bastante; aplicação e criação de nós na modelagem foi bastante

intuitivo;

2) pareceu ser uma ferramenta simples e eficaz para criar um modelo conceitual,

as explicações no tutorial esclareceu o seu uso e o exemplo prático facilitou bastante

nisto;

3) os campos obrigatórios evitaram o excesso de mensagens heuŕısticas e direciona

122

Heuristics for Systems-of-Systems Design

o usuário para o que deve ser realizado;

4) de maneira geral, gostei de modelar com o software e usaria-o em projetos,

como um módulo ou plugin de modelagem;

Aspectos negativos:

1) as propriedades do sistema poderiam ser citadas no tutorial (Provider /

Builder);

2) no tutorial poderia aparecer o uso do available/check;

3) talvez seja o caso das propriedades do SoS pertencerem ao canvas, não a um

objeto desenhado, a não ser que as missões gerais estejam ligadas a ele;

Achei a ferramenta bem intuitiva e de fácil utilização, com destaque para as

trocas de cores em relações as ações que são executadas, como por exemplo um

elemento que precisa preencher um determinado atributo fica com o fundo claro.

Outro ponto positivo da ferramenta são as próprias validações feitas pela mesma,

antes mesmo de validar o modelo, a ferramenta não permite que conexões que não

fazem sentido para um SoS sejam modeladas. Existem ainda outros pontos positivos

como o tutorial que no entanto não foi nem tanto necessário devido a facilidade de

utilização da ferramenta. Por fim achei interessante a utilização do QR para geração

da modelagem em formato Json permitindo que outros usuários remotos possam

editar em conjunto.

Q10. Você possui alguma sugestão de melhoria para a ferramenta ou

da aplicação das heuŕısticas? Em caso positivo, por favor especifique-a.

Podeŕıamos avaliar a experiência do usuário com relação a usabilidade e utilidade

da ferramenta.

1) Aumentar a altura da caixa em que é gerado o diagrama;

2) Criar os nós sempre num local viśıvel da tela, como no canto superior esquerdo;

3) O ı́cone do Exclusive gateway lembra muito botões de Cancelamento ou Ex-

clusão, eu trocaria para um random icon.

Sugiro aprimorar a documentação, principalmente no aspecto conceitual. O

tutorial apresentado apresenta exemplo e explicações muito abstratas, distantes de

uma aplicação prática.

Para melhorar a usabilidade da ferramenta, sugiro que, ao adicionar um item,

este seja adicionado na visualização atual (em um grande diagrama, o item se perde)

123

Heuristics for Systems-of-Systems Design

Para faciliar a leitura do estado atual do SoS, sugiro adicionar indicadores gráficos

para os atributos da Missão (Avaliable e Checked).

Também para facilitar a leitura da configuração atual do SoS, sugiro criar um

descritivo dos itens onde conste a interface dos sistemas constituintes.

Sugestão: um botão de desfazer. Às vezes eu me arrependia de uma ação ou

apagava acidentalmente um componente.

Melhorias:

1) possibilidade de salvar o modelo para poder dar continuidade na modelagem;

2) o uso de heuŕısticas foi bastante válido, talvez seja posśıvel otimizar suas

sugestões por algum linguagem logica (por exemplo, Prolog muito usado no campo

de IA, fazendo uso de logica de programação com regras e predicados);

3) trechos do tutorial poderia aparecer opcionalmente em cada mensagem heuŕısitca,

afim de evitar que o usuário abra uma página à parte para ler o detalhe de cada

heuŕıstica;

4) a tela para modelagem está em inglês, mas o tutorial somente em português,

poderia haver uma caixa de seleção para linguagem desejada ser a mesma em ambas;

5) poderia ser útil adicionar uma tela para cadastro das interfaces (com campo

de descrição opcional), para que o usuário não tenha que repetir a digitação manual

das interfaces toda vez que quiser modelar um novo SoS;

6) a interface do programa pode ser mais bonita (de maneira geral) em versões

mais avançadas;

1 - Ao utilizar a ferramenta um popup do JavaScript foi acionado, seguinte

mensagem de erro: ”TypeError: Cannot read property ’1’ of undefined”.

2 - Ao clicar duas vezes em um objeto em tela é disparado uma mensagem ”a”.

3 - O gateway ainda está com um fundo branco.

4 - Acho que expandir a ideia do Qr para uma edição em conjunto seria muito

interessante, não me recordo de muitas ferramentas próprias para modelagem com

essa funcionalidade.

5 - Ao clicar no check model várias heuŕısticas são validadas, acredito que fosse

interessante dividir essas heuŕısticas, como se fossem warnings e erros. Algumas

heuŕısticas o projeto não builda com outras o usuário é apenas informado sobre o

problema.

124

Heuristics for Systems-of-Systems Design

6 - Ao pensar em heŕısticas me veem a mente a ideia de métricas, daria ainda

para elaborar como trabalho futuro algo que desse um grau de confiança para o

modelo.

7 - Na área de modelagem as pessoas estão muito preocupadas em relação como

o modelo vai ficar, no entanto, já existem algumas ferramentas que fazem como se

fosse uma execução do modelo. Acho que seria interessante poder modelar o SoS

e ver algumas interações entre os modelos. O próprio camunda (ferramenta para

modelagem) possui um plugin para execução de processos para BPMN,

Q11. Este espaço é reservado para quaisquer comentários adicionais

(dificuldades, cŕıticas e/ou sugestões) a respeito do estudo executado.

Contamos com sua contribuição para que o trabalho seja aprimorado.

1) Ao deixar uma capacidade sem sistema responsável, o Check não identificou

isso como problema. Havia entendido pela IN 1 que isso seria verificado;

2) Poderia ter uma heuŕıstica para verificas a existencia de Capacidades com

mais de 1 Constituinte;

3) Entendo que arestas com possibilidade de falhas permanentes e temporárias

poderiam aparecer no Check Model;

Senti falta de alguma explicação sobre os conceitos e fundamentos de SoS na

ajuda da ferramenta. A explicação dispońıvel em http://mimamura.com/diagram/tutorial/

até apresenta um exemplo no item 2, mas não a explicação lá presente abordava de

forma muito vaga essa questão conceitual. Diferente de uma ferramenta de mode-

lagem de banco de dados, em que sei por exemplo o conceito de entidade, relaciona-

mento, chave primária, chave estrangeira, e relacionamentos. Mas aqui, no caso, não

domino os conceitos que envolvem sistemas constituintes, capacidades e refinamen-

tos, e de que forma eu posso usar os mesmos e compreender melhor o que eu estou

modelando com a ferramenta. Também a explicação sobre a heuŕıstica no item 5

do tutorial não ajudou muito em compreender de que forma poderia ser usada a

ferramenta em uma aplicação prática.

A fim de buscar mais sobre estes conceitos, fiz uma busca pelo assunto na inter-

net, e usei os seguintes documentos como referência, que me ajudaram a entender

um pouco melhor o que poderia ser feito com essa ferramenta.

Deixo aqui o link para estes documentos:

125

Heuristics for Systems-of-Systems Design

https://edisciplinas.usp.br/pluginfile.php/4475821/modresource/content/1/Aula9SistemaDeSistemas−

Resumida.pdf

http://www.dimap.ufrn.br/ everton/publications/2015-SESoS-mKAOS.pdf

http://www.dimap.ufrn.br/ everton/publications/2017-SESoS-M2Arch.pdf

Nos links acima há exemplos práticos que poderiam ser usados como referência

para construção do tutorial de uso (mostrando passo a passo quais constituintes,

capacidades e refinamentos estão sendo inseridos na modelagem, explicando qual

a finalidade de cada um dentro do SoS, de forma a tornar a explicação não tão

abstrata e mais próxima de uma aplicação da vida real).

Quanto à notação, na minha percepção o śımbolo de sistema constituinte remete

ao śımbolo de decisão do BPMN, causando certa confusão em um primeiro momento.

Talvez a escolha de outro elemento gráfico - se posśıvel - pudesse ajudar na leitura

do gráfico.

Comentário: label e title me confundiam, porque parecem descrever a mesma

coisa. Title poderia ser ”hint” ou ”notes”.

Modelagem simples de ser feita, objetivando os pontos prioritários de um SoS,

o uso de heuŕısticas foi bem útil para a correta modelagem, pode-se pensar em

aprimorar o software e integra-lo com outras ferramentas de modelagem, tal como é

feito com softwares que trabalham com RUP e UML, onde os modelos conversam com

outras ferramentas de projeto; Num momento oportuno, seria interessante pensar

em portabilidade do modelo;

Achei bastante interessante o trabalho, interface muito intuitiva e fácil apren-

dizado. Não sou um pleno conhecedor sobre SoS, no entanto, a partir da ferramenta

consegui modelar o exemplo de SoS sem grandes dificuldade.

126

